Edit model card

Diffusion model trained on FER 2013 dataset.

Here is Custom Pipeline for Class conditioned diffusion model. For training script, pipeline, tutorial nb and sampling please check my Github Repo:- https://github.com/KetanMann/Class_Conditioned_Diffusion_Training_Script Here is Class Conditional Diffusion Pipeline and Sampling.

Class Conditioned Diffusion GIF

Firstly install Requirements:-

!pip install diffusers

For Sampling run this:-

from diffusers import UNet2DModel, DDPMScheduler
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from huggingface_hub import hf_hub_download
import torch
import os
from PIL import Image
import matplotlib.pyplot as plt
from typing import List, Optional, Tuple, Union

class DDPMPipelinenew(DiffusionPipeline):
    def __init__(self, unet, scheduler, num_classes: int):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)
        self.num_classes = num_classes
        self._device = unet.device  # Ensure the pipeline knows the device

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 64,
        class_labels: Optional[torch.Tensor] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        num_inference_steps: int = 1000,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
        
        # Ensure class_labels is on the same device as the model
        class_labels = class_labels.to(self._device)
        if class_labels.ndim == 0:
            class_labels = class_labels.unsqueeze(0).expand(batch_size)
        else:
            class_labels = class_labels.expand(batch_size)

        # Sample gaussian noise to begin loop
        if isinstance(self.unet.config.sample_size, int):
            image_shape = (
                batch_size,
                self.unet.config.in_channels,
                self.unet.config.sample_size,
                self.unet.config.sample_size,
            )
        else:
            image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)

        image = randn_tensor(image_shape, generator=generator, device=self._device)

        # Set step values
        self.scheduler.set_timesteps(num_inference_steps)

        for t in self.progress_bar(self.scheduler.timesteps):
            # Ensure the class labels are correctly broadcast to match the input tensor shape
            model_output = self.unet(image, t, class_labels).sample

            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

    def to(self, device: torch.device):
        self._device = device
        self.unet.to(device)
        return self

def load_pipeline(repo_id, num_classes, device):
    unet = UNet2DModel.from_pretrained(repo_id, subfolder="unet").to(device)
    scheduler = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
    pipeline = DDPMPipelinenew(unet=unet, scheduler=scheduler, num_classes=num_classes)
    return pipeline.to(device)  # Move the entire pipeline to the device

def save_images_locally(images, save_dir, epoch, class_label):
    os.makedirs(save_dir, exist_ok=True)
    for i, image in enumerate(images):
        image_path = os.path.join(save_dir, f"image_epoch{epoch}_class{class_label}_idx{i}.png")
        image.save(image_path)

def generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch):
    generator = torch.Generator(device=pipeline._device).manual_seed(0)
    class_labels = torch.tensor([class_label] * batch_size).to(pipeline._device)
    images = pipeline(
        generator=generator,
        batch_size=batch_size,
        num_inference_steps=num_inference_steps,
        class_labels=class_labels,
        output_type="pil",
    ).images
    save_images_locally(images, save_dir, epoch, class_label)
    return images

def create_image_grid(images, grid_size, save_path):
    total_images = grid_size ** 2
    if len(images) < total_images:
        padding_images = total_images - len(images)
        images += [Image.new('RGB', images[0].size)] * padding_images  # Pad with blank images

    width, height = images[0].size
    grid_img = Image.new('RGB', (grid_size * width, grid_size * height))
    
    for i, image in enumerate(images):
        x = i % grid_size * width
        y = i // grid_size * height
        grid_img.paste(image, (x, y))
    
    grid_img.save(save_path)
    return grid_img

if __name__ == "__main__":
    repo_id = "Ketansomewhere/King"
    num_classes = 7  # Adjust to your number of classes
    batch_size = 64
    num_inference_steps = 1000  # Can be as low as 50 for faster generation
    save_dir = "generated_images"
    epoch = 0
    grid_size = 8  # 8x8 grid

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    pipeline = load_pipeline(repo_id, num_classes, device)
    
    for class_label in range(num_classes):
        images = generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch)
        
        # Create and save the grid image
        grid_img_path = os.path.join(save_dir, f"grid_image_class{class_label}.png")
        grid_img = create_image_grid(images, grid_size, grid_img_path)
        
        # Plot the grid image
        plt.figure(figsize=(10, 10))
        plt.imshow(grid_img)
        plt.axis('off')
        plt.title(f'Class {class_label}')
        plt.savefig(os.path.join(save_dir, f"grid_image_class{class_label}.png"))
        plt.show()
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .