segformer-b0-scene-parse-150

This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2731
  • Mean Iou: 0.0416
  • Mean Accuracy: 0.1172
  • Overall Accuracy: 0.4072
  • Per Category Iou: [0.3721135292282805, 0.40287008038805977, 0.41205222631402744, 0.4203175674409013, 0.7047103377998144, 0.20028210388883708, 0.10121880050278327, 0.026596654222120892, 0.14045681777374575, 0.0, 0.0, 0.0, 0.0003650063224309421, nan, 0.0, 0.0, nan, 0.0, 0.0029315960912052116, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan]
  • Per Category Accuracy: [0.669659672186919, 0.7841818825878337, 0.8623202215072808, 0.5459747723177324, 0.7109785788816826, 0.2396702284964986, 0.10296132243481437, 0.02784823346860826, 0.1541397244504825, 0.0, nan, 0.0, 0.00046086741831947986, nan, nan, 0.0, nan, 0.0, 0.0035994240921452566, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
4.9683 1.0 20 4.8943 0.0062 0.0342 0.1367 [0.2961808210940513, 0.12460786693350798, 0.18738557043139947, 0.011100751704446127, 9.205654317451875e-05, 0.03942405338749456, 0.0, 0.021631386665233975, 0.03805527830730879, 0.0, 0.0, 0.0, 0.0034454277286135693, 0.0, 0.0, 0.0, nan, 0.0, 0.002696078431372549, 0.0015002344116268166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0] [0.4404505303573381, 0.17524232763340095, 0.4405652022823321, 0.011133297618467833, 9.206784377109889e-05, 0.053071729486929106, 0.0, 0.02402870613511578, 0.04171614355123904, 0.0, nan, 0.0, 0.004806188791046004, nan, nan, 0.0, nan, 0.0, 0.0046192609182530795, 0.001703275256378411, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan]
4.5272 2.0 40 4.6592 0.0139 0.0686 0.2554 [0.3339286191097729, 0.3305479109331999, 0.27945185583541543, 0.07576188310211508, 0.12884978001257072, 0.06165808428207858, 0.03636383873911979, 0.02373065196998124, 0.10004909540567947, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0034615085435735216, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0014960106382978723, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0] [0.5166324435318275, 0.6169259008791421, 0.7980371495510442, 0.07787464082209127, 0.12897170448268103, 0.07959015707390564, 0.037296223571852596, 0.024155526378610646, 0.1130665643424198, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.005339145736682131, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0016688299647691451, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan]
4.3267 3.0 60 4.4227 0.0279 0.0999 0.3438 [0.31648514758017315, 0.3719276604607682, 0.30682754702790066, 0.33565267593254805, 0.5527720319722158, 0.08871418867622967, 0.16799210105498139, 0.018504774627677998, 0.10031857577887093, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0005514999346907972, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan] [0.52953841293756, 0.741815605577561, 0.8597307386191667, 0.37942336726245557, 0.5535834850747795, 0.12388750941606451, 0.17869537421800083, 0.019530317498209597, 0.11103390700592686, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0007598784194528875, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan]
4.3404 4.0 80 4.2703 0.0385 0.1161 0.4052 [0.3710653816370524, 0.4109575832709178, 0.40376649420235694, 0.42783383663548646, 0.6607708365154523, 0.18564556734400287, 0.10468739339079806, 0.0372464041203442, 0.12797046909082194, 0.0, 0.0, 0.0, 0.00019595035924232528, nan, 0.0, 0.0, nan, 0.0, 0.0017170597692896055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan] [0.6893503274485742, 0.7686149486362026, 0.8599325165065522, 0.5657916524618906, 0.663819383350042, 0.2304215606952543, 0.10509612311064433, 0.03981409644306517, 0.1384177421947514, 0.0, nan, 0.0, 0.0002468932598140071, nan, nan, 0.0, nan, 0.0, 0.0021996480563109904, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan]
4.138 5.0 100 4.2731 0.0416 0.1172 0.4072 [0.3721135292282805, 0.40287008038805977, 0.41205222631402744, 0.4203175674409013, 0.7047103377998144, 0.20028210388883708, 0.10121880050278327, 0.026596654222120892, 0.14045681777374575, 0.0, 0.0, 0.0, 0.0003650063224309421, nan, 0.0, 0.0, nan, 0.0, 0.0029315960912052116, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan] [0.669659672186919, 0.7841818825878337, 0.8623202215072808, 0.5459747723177324, 0.7109785788816826, 0.2396702284964986, 0.10296132243481437, 0.02784823346860826, 0.1541397244504825, 0.0, nan, 0.0, 0.00046086741831947986, nan, nan, 0.0, nan, 0.0, 0.0035994240921452566, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan]

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
37
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train KarthikG123/segformer-b0-scene-parse-150