File size: 1,959 Bytes
fb4987f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
tags:
- merge
- mergekit
- lazymergekit
- Kaoeiri/Keiana-L3-Test5.4-8B-10
- Kaoeiri/Keiana-L3-Test4.7-8B-3
- Kaoeiri/Keiana-L3-Test6-8B-16
base_model:
- Kaoeiri/Keiana-L3-Test5.4-8B-10
- Kaoeiri/Keiana-L3-Test4.7-8B-3
- Kaoeiri/Keiana-L3-Test6-8B-16
---
# Keiana-L3-Test6.2-8B-18
Keiana-L3-Test6.2-8B-18 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
# Keep in mind that, this merged model isn't usually tested at the moment, which could benefit in vocabulary error.
* [Kaoeiri/Keiana-L3-Test5.4-8B-10](https://huggingface.co/Kaoeiri/Keiana-L3-Test5.4-8B-10)
* [Kaoeiri/Keiana-L3-Test4.7-8B-3](https://huggingface.co/Kaoeiri/Keiana-L3-Test4.7-8B-3)
* [Kaoeiri/Keiana-L3-Test6-8B-16](https://huggingface.co/Kaoeiri/Keiana-L3-Test6-8B-16)
## 🧩 Configuration
```yaml
merge_method: model_stock
dtype: float16
base_model: Kaoeiri/Keiana-L3-Test5.75-8B-13.5
models:
- model: Kaoeiri/Keiana-L3-Test5.4-8B-10
parameters:
weight: .2
density: .25
- model: Kaoeiri/Keiana-L3-Test4.7-8B-3
parameters:
weight: .25
density: .5
- model: Kaoeiri/Keiana-L3-Test6-8B-16
parameters:
weight: .2
density: .35
parameters:
int8_mask: true
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kaoeiri/Keiana-L3-Test6.2-8B-18"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |