WhartonDS_ClsModel

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2321
  • Auc Roc: 0.9733
  • F1: 0.9180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Auc Roc F1
0.6867 1.0 24 0.6946 0.4032 0.3328
0.669 2.0 48 0.6939 0.3556 0.3870
0.6525 3.0 72 0.6943 0.4651 0.4785
0.6385 4.0 96 0.6943 0.4137 0.3457
0.6269 5.0 120 0.6841 0.6255 0.5463
0.6056 6.0 144 0.6594 0.7160 0.5929
0.5931 7.0 168 0.6276 0.8175 0.7434
0.5769 8.0 192 0.6095 0.7805 0.6345
0.5621 9.0 216 0.5912 0.8197 0.6743
0.5431 10.0 240 0.5745 0.8568 0.7837
0.5264 11.0 264 0.5599 0.8599 0.7661
0.5138 12.0 288 0.5102 0.8799 0.8002
0.4982 13.0 312 0.5327 0.8859 0.7199
0.4885 14.0 336 0.5418 0.8999 0.7225
0.4684 15.0 360 0.5488 0.8854 0.7436
0.4539 16.0 384 0.4811 0.9111 0.8367
0.4451 17.0 408 0.4769 0.9188 0.8343
0.4359 18.0 432 0.4694 0.9203 0.8440
0.4222 19.0 456 0.4808 0.9236 0.8215
0.408 20.0 480 0.4217 0.9286 0.8658
0.3967 21.0 504 0.4193 0.9276 0.8475
0.386 22.0 528 0.4244 0.9214 0.8457
0.3873 23.0 552 0.3868 0.9431 0.8687
0.3751 24.0 576 0.3742 0.9483 0.8873
0.3679 25.0 600 0.3668 0.9478 0.8774
0.3634 26.0 624 0.3732 0.9478 0.8666
0.3557 27.0 648 0.3957 0.9495 0.8681
0.3421 28.0 672 0.3342 0.9467 0.8818
0.3424 29.0 696 0.3314 0.9519 0.8771
0.3344 30.0 720 0.3045 0.9604 0.8935
0.339 31.0 744 0.3084 0.9618 0.8988
0.3238 32.0 768 0.3854 0.9584 0.8850
0.3133 33.0 792 0.3031 0.9638 0.8988
0.317 34.0 816 0.2811 0.9649 0.9048
0.3151 35.0 840 0.2650 0.9661 0.9088
0.3137 36.0 864 0.3104 0.9647 0.8754
0.307 37.0 888 0.2695 0.9697 0.9103
0.306 38.0 912 0.2897 0.9628 0.8994
0.2928 39.0 936 0.3111 0.9640 0.8798
0.3068 40.0 960 0.2492 0.9707 0.9126
0.2963 41.0 984 0.2642 0.9703 0.9165
0.2915 42.0 1008 0.2567 0.9694 0.9141
0.2951 43.0 1032 0.2470 0.9710 0.9118
0.2891 44.0 1056 0.2389 0.9718 0.9142
0.2836 45.0 1080 0.2411 0.9724 0.9172
0.3091 46.0 1104 0.2401 0.9719 0.9134
0.2877 47.0 1128 0.2476 0.9712 0.9126
0.2777 48.0 1152 0.2516 0.9702 0.9110
0.285 49.0 1176 0.2367 0.9732 0.9180
0.2841 50.0 1200 0.2435 0.9728 0.9110
0.2809 51.0 1224 0.2388 0.9723 0.9119
0.283 52.0 1248 0.2335 0.9729 0.9165
0.2946 53.0 1272 0.2365 0.9726 0.9180
0.2924 54.0 1296 0.2338 0.9734 0.9172
0.289 55.0 1320 0.2333 0.9731 0.9165
0.2815 56.0 1344 0.2316 0.9737 0.9157
0.2808 57.0 1368 0.2333 0.9734 0.9157
0.2961 58.0 1392 0.2332 0.9735 0.9157
0.2806 59.0 1416 0.2336 0.9730 0.9126
0.274 60.0 1440 0.2321 0.9733 0.9180

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1,461
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.