Reviews Sentiment Analysis
A tool that analyzes the overall sentiment of customer reviews for a specific product or service, whether it’s positive or negative. This analysis is performed by using natural language processing algorithms and machine learning from the model ‘Reviews-Sentiment-Analysis’ trained by Kaludi, allowing businesses to gain valuable insights into customer satisfaction and improve their products and services accordingly.
Training Procedure
- learning_rate = 1e-5
- batch_size = 32
- warmup = 600
- max_seq_length = 128
- num_train_epochs = 10.0
Validation Metrics
- Loss: 0.159
- Accuracy: 0.952
- Precision: 0.965
- Recall: 0.938
- AUC: 0.988
- F1: 0.951
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I don't feel like you trust me to do my job."}' https://api-inference.huggingface.co/models/Kaludi/Reviews-Sentiment-Analysis
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Kaludi/Reviews-Sentiment-Analysis", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Kaludi/Reviews-Sentiment-Analysis", use_auth_token=True)
inputs = tokenizer("I don't feel like you trust me to do my job.", return_tensors="pt")
outputs = model(**inputs)
- Downloads last month
- 211
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.