File size: 9,063 Bytes
60d9bc5 e51f342 60d9bc5 e51f342 60d9bc5 e51f342 60d9bc5 e51f342 7398f2b 60d9bc5 e51f342 60d9bc5 e51f342 60d9bc5 e51f342 60d9bc5 e51f342 60d9bc5 e51f342 10973df e51f342 60d9bc5 10973df 60d9bc5 10973df 60d9bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
license: apache-2.0
language: en
datasets:
- Jzuluaga/atco2_corpus_1h
tags:
- text
- token-classification
- en-atc
- en
- generated_from_trainer
- bert
- ner-for-atc
metrics:
- Precision
- Recall
- Accuracy
- F1
widget:
- text: "csa two nine six startup approved mike current qnh one zero one eight time check one seven"
- text: "swiss four eight seven november runway three one cleared for takeoff wind one three zero degrees seven knots"
- text: "lufthansa five yankee victor runway one three clear to land wind zero seven zero degrees"
- text: "austrian seven one zulu hello to you reduce one six zero knots"
- text: "sky travel one nine two approaching holding point three one ready for departure"
model-index:
- name: bert-base-ner-atc-en-atco2-1h
results:
- task:
type: token-classification
name: ner
dataset:
type: Jzuluaga/atco2_corpus_1h
name: ATCO2 corpus (Air Traffic Control Communications)
config: test
split: test
metrics:
- type: F1
value: 0.94
name: TEST F1 (callsign)
verified: False
- type: F1
value: 0.74
name: TEST F1 (command)
verified: False
- type: F1
value: 0.81
name: TEST F1 (value)
verified: False
---
# bert-base-ner-atc-en-atco2-1h
This model allow to perform named-entity recognition (NER) on air traffic control communications data. We solve this challenge by performing token classification (NER) with a BERT model.
We fine-tune a pretrained BERT model on the ner task.
For instance, if you have the following transcripts/gold annotations:
- **Utterance**: lufthansa three two five cleared to land runway three four left
Could you tell what are the main entities in the communication? The desired output is shown below:
- **Named-entity module output**: [call] lufthansa three two five [/call] [cmd] cleared to land [/cmd] [val] runway three four left [/val]
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [atco2_corpus_1h](https://huggingface.co/datasets/Jzuluaga/atco2_corpus_1h).
<a href="https://github.com/idiap/atco2-corpus">
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\">
</a>
It achieves the following results on the development set:
- Loss: 1.4282
- Precision: 0.6195
- Recall: 0.7071
- F1: 0.6604
- Accuracy: 0.8182
**Paper**: [ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications](https://arxiv.org/abs/2211.04054)
Authors: Juan Zuluaga-Gomez, Karel Veselý, Igor Szöke, Petr Motlicek, Martin Kocour, Mickael Rigault, Khalid Choukri, Amrutha Prasad and others
Abstract: Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at this http URL. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at this url: https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.
Code — GitHub repository: https://github.com/idiap/atco2-corpus
## Intended uses & limitations
This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets where BERT was pre-trained or fine-tuned.
## Training and evaluation data
See Table 6 (page 18) in our paper: [ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications](https://arxiv.org/abs/2211.04054). We described there the data used to fine-tune our NER model.
- We use the ATCO2 corpus to fine-tune this model. You can download a free sample here: https://www.atco2.org/data
- However, do not worry, we have prepared a script in our repository for preparing this databases:
- Dataset preparation folder: https://github.com/idiap/atco2-corpus/tree/main/data/databases/atco2_test_set_1h/data_prepare_atco2_corpus_other.sh
- Get the data in the format required by HuggingFace: speaker_role/data_preparation/prepare_spkid_atco2_corpus_test_set_1h.sh
## Writing your own inference script
The snippet of code:
```python
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jzuluaga/bert-base-ner-atc-en-atco2-1h")
model = AutoModelForTokenClassification.from_pretrained("Jzuluaga/bert-base-ner-atc-en-atco2-1h")
##### Process text sample
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
nlp("lufthansa three two five cleared to land runway three four left")
# output:
[{'entity_group': 'callsign', 'score': 0.8753265,
'word': 'lufthansa three two five',
'start': 0, 'end': 24},
{'entity_group': 'command', 'score': 0.99988264,
'word': 'cleared to land', 'start': 25, 'end': 40},
{'entity_group': 'value', 'score': 0.9999145,
'word': 'runway three four left', 'start': 41, 'end': 63}]
```
# Cite us
If you use this code for your research, please cite our paper with:
```
@article{zuluaga2022bertraffic,
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
```
and,
```
@article{zuluaga2022how,
title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
```
and,
```
@article{zuluaga2022atco2,
title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
journal={arXiv preprint arXiv:2211.04054},
year={2022}
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 125.0 | 500 | 0.8692 | 0.6396 | 0.7172 | 0.6762 | 0.8307 |
| 0.2158 | 250.0 | 1000 | 1.0074 | 0.5702 | 0.6970 | 0.6273 | 0.8245 |
| 0.2158 | 375.0 | 1500 | 1.3560 | 0.6577 | 0.7374 | 0.6952 | 0.8119 |
| 0.0184 | 500.0 | 2000 | 1.3393 | 0.6182 | 0.6869 | 0.6507 | 0.8056 |
| 0.0184 | 625.0 | 2500 | 1.3528 | 0.6087 | 0.7071 | 0.6542 | 0.8213 |
| 0.0175 | 750.0 | 3000 | 1.4282 | 0.6195 | 0.7071 | 0.6604 | 0.8182 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.0
- Tokenizers 0.13.2
|