Jzuluaga commited on
Commit
60d9bc5
·
1 Parent(s): 85670c8

updating the repo with the fine-tuned model

Browse files
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: atco2_test_set_1h
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # atco2_test_set_1h
19
+
20
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.4282
23
+ - Precision: 0.6195
24
+ - Recall: 0.7071
25
+ - F1: 0.6604
26
+ - Accuracy: 0.8182
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 2
50
+ - total_train_batch_size: 64
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 500
54
+ - training_steps: 3000
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | No log | 125.0 | 500 | 0.8692 | 0.6396 | 0.7172 | 0.6762 | 0.8307 |
61
+ | 0.2158 | 250.0 | 1000 | 1.0074 | 0.5702 | 0.6970 | 0.6273 | 0.8245 |
62
+ | 0.2158 | 375.0 | 1500 | 1.3560 | 0.6577 | 0.7374 | 0.6952 | 0.8119 |
63
+ | 0.0184 | 500.0 | 2000 | 1.3393 | 0.6182 | 0.6869 | 0.6507 | 0.8056 |
64
+ | 0.0184 | 625.0 | 2500 | 1.3528 | 0.6087 | 0.7071 | 0.6542 | 0.8213 |
65
+ | 0.0175 | 750.0 | 3000 | 1.4282 | 0.6195 | 0.7071 | 0.6604 | 0.8182 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.24.0
71
+ - Pytorch 1.13.0+cu117
72
+ - Datasets 2.7.0
73
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 750.0,
3
+ "train_loss": 0.0839117234547933,
4
+ "train_runtime": 334.6639,
5
+ "train_samples_per_second": 573.71,
6
+ "train_steps_per_second": 8.964
7
+ }
classification_report ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ************* Report B/I tags*************
2
+ precision recall f1-score support
3
+
4
+ B-O 0.71 0.61 0.66 3106
5
+ B-callsign 0.85 0.89 0.87 2951
6
+ B-command 0.69 0.73 0.71 2357
7
+ B-value 0.58 0.55 0.56 3055
8
+ I-O 0.73 0.53 0.61 5403
9
+ I-callsign 0.92 0.92 0.92 8397
10
+ I-command 0.62 0.71 0.66 2795
11
+ I-value 0.73 0.85 0.78 7817
12
+
13
+ accuracy 0.76 35881
14
+ macro avg 0.73 0.72 0.72 35881
15
+ weighted avg 0.76 0.76 0.75 35881
16
+
17
+ ************ Report with merged classes ***********
18
+ precision recall f1-score support
19
+
20
+ O 0.80 0.63 0.70 8509
21
+ callsign 0.93 0.95 0.94 11348
22
+ command 0.70 0.78 0.74 5152
23
+ value 0.77 0.85 0.81 10872
24
+
25
+ accuracy 0.82 35881
26
+ macro avg 0.80 0.80 0.80 35881
27
+ weighted avg 0.82 0.82 0.81 35881
28
+
29
+
30
+ JACCARD ERROR RATE (JER): [51.10824742 22.8462217 44.672 60.66494966 55.62913907 14.40397351
31
+ 50.74626866 35.74402169]
32
+ JER - WEIGHTED : 37.89041510368749
33
+
34
+
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "experiments/results/ner/baseline/bert-base-uncased/1234/atco2_test_set_1h//",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "B-O",
14
+ "1": "O",
15
+ "2": "I-O",
16
+ "3": "B-value",
17
+ "4": "I-value",
18
+ "5": "B-callsign",
19
+ "6": "B-command",
20
+ "7": "I-callsign",
21
+ "8": "I-command"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "B-O": 0,
27
+ "B-callsign": 5,
28
+ "B-command": 6,
29
+ "B-value": 3,
30
+ "I-O": 2,
31
+ "I-callsign": 7,
32
+ "I-command": 8,
33
+ "I-value": 4,
34
+ "O": 1
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "max_position_embeddings": 512,
38
+ "model_type": "bert",
39
+ "num_attention_heads": 12,
40
+ "num_hidden_layers": 12,
41
+ "pad_token_id": 0,
42
+ "position_embedding_type": "absolute",
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.24.0",
45
+ "type_vocab_size": 2,
46
+ "use_cache": true,
47
+ "vocab_size": 30522
48
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d324a065c486a170865e72c584a817114112ad8c3fe38a4bd31527f72f62887
3
+ size 435663597
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": true,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "experiments/results/ner/baseline/bert-base-uncased/1234/atco2_test_set_1h//",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 750.0,
3
+ "train_loss": 0.0839117234547933,
4
+ "train_runtime": 334.6639,
5
+ "train_samples_per_second": 573.71,
6
+ "train_steps_per_second": 8.964
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 750.0,
5
+ "global_step": 3000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 125.0,
12
+ "eval_accuracy": 0.8307210031347962,
13
+ "eval_f1": 0.6761904761904761,
14
+ "eval_loss": 0.869185745716095,
15
+ "eval_precision": 0.6396396396396397,
16
+ "eval_recall": 0.7171717171717171,
17
+ "eval_runtime": 1.1326,
18
+ "eval_samples_per_second": 24.722,
19
+ "eval_steps_per_second": 1.766,
20
+ "step": 500
21
+ },
22
+ {
23
+ "epoch": 250.0,
24
+ "learning_rate": 4e-05,
25
+ "loss": 0.2158,
26
+ "step": 1000
27
+ },
28
+ {
29
+ "epoch": 250.0,
30
+ "eval_accuracy": 0.8244514106583072,
31
+ "eval_f1": 0.6272727272727273,
32
+ "eval_loss": 1.0074251890182495,
33
+ "eval_precision": 0.5702479338842975,
34
+ "eval_recall": 0.696969696969697,
35
+ "eval_runtime": 0.5366,
36
+ "eval_samples_per_second": 52.181,
37
+ "eval_steps_per_second": 3.727,
38
+ "step": 1000
39
+ },
40
+ {
41
+ "epoch": 375.0,
42
+ "eval_accuracy": 0.8119122257053292,
43
+ "eval_f1": 0.6952380952380952,
44
+ "eval_loss": 1.3559716939926147,
45
+ "eval_precision": 0.6576576576576577,
46
+ "eval_recall": 0.7373737373737373,
47
+ "eval_runtime": 0.5707,
48
+ "eval_samples_per_second": 49.06,
49
+ "eval_steps_per_second": 3.504,
50
+ "step": 1500
51
+ },
52
+ {
53
+ "epoch": 500.0,
54
+ "learning_rate": 2e-05,
55
+ "loss": 0.0184,
56
+ "step": 2000
57
+ },
58
+ {
59
+ "epoch": 500.0,
60
+ "eval_accuracy": 0.8056426332288401,
61
+ "eval_f1": 0.6507177033492823,
62
+ "eval_loss": 1.339294195175171,
63
+ "eval_precision": 0.6181818181818182,
64
+ "eval_recall": 0.6868686868686869,
65
+ "eval_runtime": 0.5948,
66
+ "eval_samples_per_second": 47.076,
67
+ "eval_steps_per_second": 3.363,
68
+ "step": 2000
69
+ },
70
+ {
71
+ "epoch": 625.0,
72
+ "eval_accuracy": 0.8213166144200627,
73
+ "eval_f1": 0.6542056074766355,
74
+ "eval_loss": 1.3527517318725586,
75
+ "eval_precision": 0.6086956521739131,
76
+ "eval_recall": 0.7070707070707071,
77
+ "eval_runtime": 0.5373,
78
+ "eval_samples_per_second": 52.109,
79
+ "eval_steps_per_second": 3.722,
80
+ "step": 2500
81
+ },
82
+ {
83
+ "epoch": 750.0,
84
+ "learning_rate": 0.0,
85
+ "loss": 0.0175,
86
+ "step": 3000
87
+ },
88
+ {
89
+ "epoch": 750.0,
90
+ "eval_accuracy": 0.8181818181818182,
91
+ "eval_f1": 0.660377358490566,
92
+ "eval_loss": 1.4282338619232178,
93
+ "eval_precision": 0.6194690265486725,
94
+ "eval_recall": 0.7070707070707071,
95
+ "eval_runtime": 0.5599,
96
+ "eval_samples_per_second": 50.01,
97
+ "eval_steps_per_second": 3.572,
98
+ "step": 3000
99
+ },
100
+ {
101
+ "epoch": 750.0,
102
+ "step": 3000,
103
+ "total_flos": 3253656728250000.0,
104
+ "train_loss": 0.0839117234547933,
105
+ "train_runtime": 334.6639,
106
+ "train_samples_per_second": 573.71,
107
+ "train_steps_per_second": 8.964
108
+ }
109
+ ],
110
+ "max_steps": 3000,
111
+ "num_train_epochs": 750,
112
+ "total_flos": 3253656728250000.0,
113
+ "trial_name": null,
114
+ "trial_params": null
115
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0608652fbed1fef6adc00256e46dbf72205c353bc0368a023a085bff3e9d020c
3
+ size 3451
vocab.txt ADDED
The diff for this file is too large to render. See raw diff