updating the repo with the fine-tuned model
Browse files- README.md +73 -0
- all_results.json +7 -0
- classification_report +34 -0
- config.json +48 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- train_results.json +7 -0
- trainer_state.json +115 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: atco2_test_set_1h
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# atco2_test_set_1h
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.4282
|
23 |
+
- Precision: 0.6195
|
24 |
+
- Recall: 0.7071
|
25 |
+
- F1: 0.6604
|
26 |
+
- Accuracy: 0.8182
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 2
|
50 |
+
- total_train_batch_size: 64
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 500
|
54 |
+
- training_steps: 3000
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
60 |
+
| No log | 125.0 | 500 | 0.8692 | 0.6396 | 0.7172 | 0.6762 | 0.8307 |
|
61 |
+
| 0.2158 | 250.0 | 1000 | 1.0074 | 0.5702 | 0.6970 | 0.6273 | 0.8245 |
|
62 |
+
| 0.2158 | 375.0 | 1500 | 1.3560 | 0.6577 | 0.7374 | 0.6952 | 0.8119 |
|
63 |
+
| 0.0184 | 500.0 | 2000 | 1.3393 | 0.6182 | 0.6869 | 0.6507 | 0.8056 |
|
64 |
+
| 0.0184 | 625.0 | 2500 | 1.3528 | 0.6087 | 0.7071 | 0.6542 | 0.8213 |
|
65 |
+
| 0.0175 | 750.0 | 3000 | 1.4282 | 0.6195 | 0.7071 | 0.6604 | 0.8182 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.24.0
|
71 |
+
- Pytorch 1.13.0+cu117
|
72 |
+
- Datasets 2.7.0
|
73 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 750.0,
|
3 |
+
"train_loss": 0.0839117234547933,
|
4 |
+
"train_runtime": 334.6639,
|
5 |
+
"train_samples_per_second": 573.71,
|
6 |
+
"train_steps_per_second": 8.964
|
7 |
+
}
|
classification_report
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
************* Report B/I tags*************
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
B-O 0.71 0.61 0.66 3106
|
5 |
+
B-callsign 0.85 0.89 0.87 2951
|
6 |
+
B-command 0.69 0.73 0.71 2357
|
7 |
+
B-value 0.58 0.55 0.56 3055
|
8 |
+
I-O 0.73 0.53 0.61 5403
|
9 |
+
I-callsign 0.92 0.92 0.92 8397
|
10 |
+
I-command 0.62 0.71 0.66 2795
|
11 |
+
I-value 0.73 0.85 0.78 7817
|
12 |
+
|
13 |
+
accuracy 0.76 35881
|
14 |
+
macro avg 0.73 0.72 0.72 35881
|
15 |
+
weighted avg 0.76 0.76 0.75 35881
|
16 |
+
|
17 |
+
************ Report with merged classes ***********
|
18 |
+
precision recall f1-score support
|
19 |
+
|
20 |
+
O 0.80 0.63 0.70 8509
|
21 |
+
callsign 0.93 0.95 0.94 11348
|
22 |
+
command 0.70 0.78 0.74 5152
|
23 |
+
value 0.77 0.85 0.81 10872
|
24 |
+
|
25 |
+
accuracy 0.82 35881
|
26 |
+
macro avg 0.80 0.80 0.80 35881
|
27 |
+
weighted avg 0.82 0.82 0.81 35881
|
28 |
+
|
29 |
+
|
30 |
+
JACCARD ERROR RATE (JER): [51.10824742 22.8462217 44.672 60.66494966 55.62913907 14.40397351
|
31 |
+
50.74626866 35.74402169]
|
32 |
+
JER - WEIGHTED : 37.89041510368749
|
33 |
+
|
34 |
+
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "experiments/results/ner/baseline/bert-base-uncased/1234/atco2_test_set_1h//",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "B-O",
|
14 |
+
"1": "O",
|
15 |
+
"2": "I-O",
|
16 |
+
"3": "B-value",
|
17 |
+
"4": "I-value",
|
18 |
+
"5": "B-callsign",
|
19 |
+
"6": "B-command",
|
20 |
+
"7": "I-callsign",
|
21 |
+
"8": "I-command"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"B-O": 0,
|
27 |
+
"B-callsign": 5,
|
28 |
+
"B-command": 6,
|
29 |
+
"B-value": 3,
|
30 |
+
"I-O": 2,
|
31 |
+
"I-callsign": 7,
|
32 |
+
"I-command": 8,
|
33 |
+
"I-value": 4,
|
34 |
+
"O": 1
|
35 |
+
},
|
36 |
+
"layer_norm_eps": 1e-12,
|
37 |
+
"max_position_embeddings": 512,
|
38 |
+
"model_type": "bert",
|
39 |
+
"num_attention_heads": 12,
|
40 |
+
"num_hidden_layers": 12,
|
41 |
+
"pad_token_id": 0,
|
42 |
+
"position_embedding_type": "absolute",
|
43 |
+
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.24.0",
|
45 |
+
"type_vocab_size": 2,
|
46 |
+
"use_cache": true,
|
47 |
+
"vocab_size": 30522
|
48 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d324a065c486a170865e72c584a817114112ad8c3fe38a4bd31527f72f62887
|
3 |
+
size 435663597
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_lower_case": true,
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 512,
|
6 |
+
"name_or_path": "experiments/results/ner/baseline/bert-base-uncased/1234/atco2_test_set_1h//",
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"strip_accents": null,
|
11 |
+
"tokenize_chinese_chars": true,
|
12 |
+
"tokenizer_class": "BertTokenizer",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 750.0,
|
3 |
+
"train_loss": 0.0839117234547933,
|
4 |
+
"train_runtime": 334.6639,
|
5 |
+
"train_samples_per_second": 573.71,
|
6 |
+
"train_steps_per_second": 8.964
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 750.0,
|
5 |
+
"global_step": 3000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 125.0,
|
12 |
+
"eval_accuracy": 0.8307210031347962,
|
13 |
+
"eval_f1": 0.6761904761904761,
|
14 |
+
"eval_loss": 0.869185745716095,
|
15 |
+
"eval_precision": 0.6396396396396397,
|
16 |
+
"eval_recall": 0.7171717171717171,
|
17 |
+
"eval_runtime": 1.1326,
|
18 |
+
"eval_samples_per_second": 24.722,
|
19 |
+
"eval_steps_per_second": 1.766,
|
20 |
+
"step": 500
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 250.0,
|
24 |
+
"learning_rate": 4e-05,
|
25 |
+
"loss": 0.2158,
|
26 |
+
"step": 1000
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 250.0,
|
30 |
+
"eval_accuracy": 0.8244514106583072,
|
31 |
+
"eval_f1": 0.6272727272727273,
|
32 |
+
"eval_loss": 1.0074251890182495,
|
33 |
+
"eval_precision": 0.5702479338842975,
|
34 |
+
"eval_recall": 0.696969696969697,
|
35 |
+
"eval_runtime": 0.5366,
|
36 |
+
"eval_samples_per_second": 52.181,
|
37 |
+
"eval_steps_per_second": 3.727,
|
38 |
+
"step": 1000
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 375.0,
|
42 |
+
"eval_accuracy": 0.8119122257053292,
|
43 |
+
"eval_f1": 0.6952380952380952,
|
44 |
+
"eval_loss": 1.3559716939926147,
|
45 |
+
"eval_precision": 0.6576576576576577,
|
46 |
+
"eval_recall": 0.7373737373737373,
|
47 |
+
"eval_runtime": 0.5707,
|
48 |
+
"eval_samples_per_second": 49.06,
|
49 |
+
"eval_steps_per_second": 3.504,
|
50 |
+
"step": 1500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 500.0,
|
54 |
+
"learning_rate": 2e-05,
|
55 |
+
"loss": 0.0184,
|
56 |
+
"step": 2000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 500.0,
|
60 |
+
"eval_accuracy": 0.8056426332288401,
|
61 |
+
"eval_f1": 0.6507177033492823,
|
62 |
+
"eval_loss": 1.339294195175171,
|
63 |
+
"eval_precision": 0.6181818181818182,
|
64 |
+
"eval_recall": 0.6868686868686869,
|
65 |
+
"eval_runtime": 0.5948,
|
66 |
+
"eval_samples_per_second": 47.076,
|
67 |
+
"eval_steps_per_second": 3.363,
|
68 |
+
"step": 2000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 625.0,
|
72 |
+
"eval_accuracy": 0.8213166144200627,
|
73 |
+
"eval_f1": 0.6542056074766355,
|
74 |
+
"eval_loss": 1.3527517318725586,
|
75 |
+
"eval_precision": 0.6086956521739131,
|
76 |
+
"eval_recall": 0.7070707070707071,
|
77 |
+
"eval_runtime": 0.5373,
|
78 |
+
"eval_samples_per_second": 52.109,
|
79 |
+
"eval_steps_per_second": 3.722,
|
80 |
+
"step": 2500
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 750.0,
|
84 |
+
"learning_rate": 0.0,
|
85 |
+
"loss": 0.0175,
|
86 |
+
"step": 3000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 750.0,
|
90 |
+
"eval_accuracy": 0.8181818181818182,
|
91 |
+
"eval_f1": 0.660377358490566,
|
92 |
+
"eval_loss": 1.4282338619232178,
|
93 |
+
"eval_precision": 0.6194690265486725,
|
94 |
+
"eval_recall": 0.7070707070707071,
|
95 |
+
"eval_runtime": 0.5599,
|
96 |
+
"eval_samples_per_second": 50.01,
|
97 |
+
"eval_steps_per_second": 3.572,
|
98 |
+
"step": 3000
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 750.0,
|
102 |
+
"step": 3000,
|
103 |
+
"total_flos": 3253656728250000.0,
|
104 |
+
"train_loss": 0.0839117234547933,
|
105 |
+
"train_runtime": 334.6639,
|
106 |
+
"train_samples_per_second": 573.71,
|
107 |
+
"train_steps_per_second": 8.964
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"max_steps": 3000,
|
111 |
+
"num_train_epochs": 750,
|
112 |
+
"total_flos": 3253656728250000.0,
|
113 |
+
"trial_name": null,
|
114 |
+
"trial_params": null
|
115 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0608652fbed1fef6adc00256e46dbf72205c353bc0368a023a085bff3e9d020c
|
3 |
+
size 3451
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|