metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.78
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9204
- Accuracy: 0.78
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2131 | 1.0 | 113 | 2.0971 | 0.42 |
1.786 | 2.0 | 226 | 1.6744 | 0.56 |
1.5128 | 3.0 | 339 | 1.4491 | 0.66 |
1.2987 | 4.0 | 452 | 1.2673 | 0.74 |
1.1823 | 5.0 | 565 | 1.1610 | 0.71 |
1.0707 | 6.0 | 678 | 1.0937 | 0.74 |
1.0015 | 7.0 | 791 | 1.0214 | 0.75 |
0.8765 | 8.0 | 904 | 0.9650 | 0.75 |
0.833 | 9.0 | 1017 | 0.9415 | 0.75 |
0.7924 | 10.0 | 1130 | 0.9204 | 0.78 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1