BARTxiv

See the model implementation here.

This model is a fine-tuned version of facebook/bart-large-cnn on the arxiv-summarization dataset. It achieves the following results on the validation set:

  • Loss: 0.86
  • Rouge1: 41.70
  • Rouge2: 15.13
  • Rougel: 22.85
  • Rougelsum: 37.77

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-6
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adafactor
  • num_epochs: 9

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.24 1.0 1073 1.24 38.32 12.80 20.55 34.50
1.04 2.0 2146 1.04 39.65 13.74 21.28 35.83
0.979 3.0 3219 0.98 40.19 14.30 21.87 36.38
0.970 4.0 4292 0.97 40.87 14.44 22.14 36.89
0.918 5.0 5365 0.92 41.17 14.94 22.54 37.40
0.901 6.0 6438 0.90 41.02 14.65 22.46 37.05
0.889 7.0 7511 0.89 41.32 15.09 22.64 37.42
0.900 8.0 8584 0 .90 41.23 15.02 22.67 37.28
0.869 9.0 9657 0.87 41.70 15.13 22.85 37.77

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
177
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JustinDu/BARTxiv

Quantizations
1 model

Dataset used to train JustinDu/BARTxiv

Evaluation results