File size: 2,798 Bytes
24a7edb
1f9986e
24a7edb
8b2d401
24a7edb
 
 
 
 
1f9986e
c8b7380
24a7edb
 
8b2d401
 
24a7edb
 
 
1f9986e
24a7edb
8b2d401
24a7edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5930bcc
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: JunxiongWang/mamba_0_5_sft
tags:
- mamba
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mamba_0_5_dpo_ep3
  results: []
---

Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details.

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mamba_0_5_dpo_ep3

This model is a fine-tuned version of [JunxiongWang/mamba_0_5_dpo_ep3](https://huggingface.co/JunxiongWang/mamba_0_5_sft) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7141
- Rewards/chosen: -5.3346
- Rewards/rejected: -8.3118
- Rewards/accuracies: 0.7891
- Rewards/margins: 2.9772
- Logps/rejected: -337.4994
- Logps/chosen: -304.9619
- Logits/rejected: -2.7812
- Logits/chosen: -2.8272

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.1171        | 1.0466 | 2000 | 0.5329          | -1.4521        | -2.9272          | 0.7734             | 1.4750          | -283.6535      | -266.1376    | -2.8897         | -2.9362       |
| 0.0086        | 2.0931 | 4000 | 0.7141          | -5.3346        | -8.3118          | 0.7891             | 2.9772          | -337.4994      | -304.9619    | -2.7812         | -2.8272       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.0+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1

[MambaInLlama](arxiv.org/abs/2408.15237)

```
@article{junxiongdaniele2024mambainllama,
  title   = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
  author  = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
  journal = {arXiv preprint arXiv:2408.15237},
  year    = {2024}
}
```