Please check here for details.
JunxiongWang/Mamba2InLlama_0_875
This model is a fine-tuned version of JunxiongWang/llama3_0_875_mamba2_sft on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4761
- Rewards/chosen: -1.4040
- Rewards/rejected: -2.6012
- Rewards/accuracies: 0.7982
- Rewards/margins: 1.1973
- Logps/rejected: -584.9104
- Logps/chosen: -459.0677
- Logits/rejected: 0.3408
- Logits/chosen: 0.3851
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Rewards/chosen |
Rewards/rejected |
Rewards/accuracies |
Rewards/margins |
Logps/rejected |
Logps/chosen |
Logits/rejected |
Logits/chosen |
0.5009 |
0.4798 |
2000 |
0.4998 |
-1.4973 |
-2.6147 |
0.7804 |
1.1175 |
-586.2582 |
-468.3976 |
0.4682 |
0.5136 |
0.4895 |
0.9597 |
4000 |
0.4761 |
-1.4040 |
-2.6012 |
0.7982 |
1.1973 |
-584.9104 |
-459.0677 |
0.3408 |
0.3851 |
Framework versions
- Transformers 4.43.1
- Pytorch 2.1.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
MambaInLlama
@article{junxiongdaniele2024mambainllama,
title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
journal = {arXiv preprint arXiv:2408.15237},
year = {2024}
}