Edit model card

whisper-small-zhTW-miltilang-test-4090

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1771
  • Cer: 34.9612
  • Wer: 40.1830
  • Both Er: 38.1632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer Both Er
0.299 0.5340 1000 0.2359 37.8038 55.5369 48.6777
0.139 1.0681 2000 0.1909 33.7847 49.9751 43.7126
0.1452 1.6021 3000 0.1768 31.8054 47.2183 41.2565
0.0417 2.1362 4000 0.1662 29.6447 40.6133 36.3706
0.0476 2.6702 5000 0.1564 28.2215 41.5191 36.3755
0.0207 3.2043 6000 0.1629 33.8760 44.8345 40.5957
0.0194 3.7383 7000 0.1610 31.7575 39.8086 36.6944
0.0061 4.2724 8000 0.1675 31.8979 40.4427 37.1375
0.008 4.8064 9000 0.1683 32.3771 38.3019 36.0101
0.0025 5.3405 10000 0.1760 35.2427 44.1596 40.7105
0.0031 5.8745 11000 0.1754 37.8861 43.1949 41.1414
0.0019 6.4085 12000 0.1771 34.9612 40.1830 38.1632

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JunWorks/whisper-small-zhTW-miltilang-test-4090

Finetuned
(1853)
this model