results_1011
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9956
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6788 | 0.3901 | 100 | 2.2881 |
2.4361 | 0.7801 | 200 | 2.2154 |
2.3903 | 1.1702 | 300 | 2.1747 |
2.3166 | 1.5602 | 400 | 2.1358 |
2.2868 | 1.9503 | 500 | 2.1058 |
2.2048 | 2.3403 | 600 | 2.0800 |
2.1999 | 2.7304 | 700 | 2.0613 |
2.1711 | 3.1204 | 800 | 2.0471 |
2.1038 | 3.5105 | 900 | 2.0329 |
2.1115 | 3.9005 | 1000 | 2.0185 |
2.0859 | 4.2906 | 1100 | 2.0129 |
2.0455 | 4.6806 | 1200 | 2.0084 |
2.0338 | 5.0707 | 1300 | 2.0022 |
1.9991 | 5.4608 | 1400 | 2.0011 |
1.9948 | 5.8508 | 1500 | 1.9966 |
1.948 | 6.2409 | 1600 | 1.9977 |
1.9773 | 6.6309 | 1700 | 1.9909 |
1.9228 | 7.0210 | 1800 | 1.9915 |
1.8997 | 7.4110 | 1900 | 1.9947 |
1.9212 | 7.8011 | 2000 | 1.9868 |
1.8786 | 8.1911 | 2100 | 2.0092 |
1.8762 | 8.5812 | 2200 | 2.0070 |
1.8724 | 8.9712 | 2300 | 2.0023 |
1.8604 | 9.3613 | 2400 | 1.9978 |
1.8436 | 9.7513 | 2500 | 1.9956 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for Jsoo/results_1011
Base model
meta-llama/Llama-3.2-3B-Instruct