SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l-v2.0
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Jrinky/snowflake")
# Run inference
sentences = [
    'Why is it important to keep moving over the summer',
    "It's important to keep moving over the summer!",
    '2008. CHENG HF, LEE YM, Chu CH, Leung WK & Mok TMY. - Journal Editor (Hong Kong Medical Journal) 2008\n- Editor-in-Chief (Hong Kong Dental Journal) 2007\n- Editor-in-Chief (Hong Kong Dental Journal) 2006\n- Deputy Editor (Hong Kong Dental Journal) 2004',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 69,500 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 6 tokens
    • mean: 17.47 tokens
    • max: 44 tokens
    • min: 3 tokens
    • mean: 113.33 tokens
    • max: 1024 tokens
  • Samples:
    anchor positive
    What might have been unnecessary if better emergency plans had been implemented If better emergency plans had been in place, maybe chemical dipersants wouldn't be needed. And on and on.
    What was the year of publication for the 3rd Edition of 'Regular Polytopes' by H.S.M. Coxeter Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
    (Paper 22) H.S.M.
    Who is the author of the GURPS Shapeshifters supplement GURPS Shapeshifters () is a supplement by Robert M. Schroeck for the GURPS role-playing game system, third edition.
  • Loss: selfloss.Infonce with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 17,376 evaluation samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 6 tokens
    • mean: 16.87 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 115.36 tokens
    • max: 1024 tokens
  • Samples:
    anchor positive
    What impressive achievements did the Warriors accomplish during their last season in Division III The Warriors were among the most lethal offensive teams in Division III this past year, posting a team batting average of .344 and averaging nearly seven runs per game, smacking 29 home runs, and collecting nearly 600 total bases. They shared the Little East Conference regular-season championship and later knocked off the top seed in the NCAA regional tournament (Montclair State) en route to their winningest season in 14 years.
    How many bars had nectar and capped honey on them Eight of the bars had nectar and capped honey on them. There are eighteen bars with brood in some form on them and a mix of workers and drones.
    What idea is being requested regarding the 'triangle' Next up...the "triangle". Please, seriously, if anyone could float me an idea, I would really appreciate it.
  • Loss: selfloss.Infonce with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 3
  • per_device_eval_batch_size: 3
  • learning_rate: 5e-06
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 3
  • per_device_eval_batch_size: 3
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss
0.0777 150 0.0257 0.0134
0.1554 300 0.0136 0.0082
0.2332 450 0.0079 0.0062
0.3109 600 0.0065 0.0051
0.3886 750 0.0059 0.0045
0.4663 900 0.0057 0.0040
0.5440 1050 0.0064 0.0037
0.6218 1200 0.005 0.0034
0.6995 1350 0.0052 0.0034
0.7772 1500 0.0041 0.0032

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.2.0
  • Transformers: 4.44.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

Infonce

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Jrinky/snowflake

Finetuned
(9)
this model