File size: 14,788 Bytes
893630b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
//===----------------------------------------------------------------------===//
//
// Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved.
//
// TPU-MLIR is licensed under the 2-Clause BSD License except for the
// third-party components.
//
//===----------------------------------------------------------------------===//
#include <iostream>
#include <cstdlib>
#include <vector>
#include <assert.h>
#include <chrono>
#include <algorithm>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "memory.h"
#include "bmruntime_interface.h"
#include <getopt.h>
#include <stdio.h>
#include <inttypes.h>
#include <random>
#include <numeric>
static const uint16_t ATTENTION_MASK = 0xF0E2;
class Llama3 {
public:
void init(const std::vector<int> &devid, std::string model_path);
void deinit();
int forward_first(std::vector<int> &tokens);
int forward_next();
std::vector<int> generate(std::vector<int> &history_tokens, int EOS);
std::mt19937 sgen;
Llama3() : sgen(std::random_device()()){};
private:
void net_launch(const bm_net_info_t *net, int stage_idx = 0);
inline void d2d(bm_device_mem_t &dst, bm_device_mem_t &src);
void head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
int greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
int penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
public:
int token_length;
int SEQLEN; // read from bmodel
int NUM_LAYERS; // read from bmodel
bool io_alone;
std::vector<int> visited_tokens;
// generation
float temperature;
float top_p;
float repeat_penalty;
int repeat_last_n;
int max_new_tokens;
std::string generation_mode;
std::string prompt_mode;
private:
std::vector<bm_handle_t> handles;
bm_handle_t bm_handle;
void *p_bmrt;
std::vector<const bm_net_info_t *> net_blocks;
std::vector<const bm_net_info_t *> net_blocks_cache;
const bm_net_info_t *net_embed;
const bm_net_info_t *net_embed_cache;
const bm_net_info_t *net_lm, *net_greedy_head, *net_penalty_sample_head;
std::vector<bm_device_mem_t> past_key;
std::vector<bm_device_mem_t> past_value;
};
void Llama3::net_launch(const bm_net_info_t *net, int stage_idx) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
for (int i = 0; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[stage_idx].input_mems[i],
net->input_dtypes[i], net->stages[stage_idx].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[stage_idx].output_mems[i],
net->output_dtypes[i], net->stages[stage_idx].output_shapes[i]);
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
assert(ret);
bm_thread_sync(bm_handle);
}
void Llama3::d2d(bm_device_mem_t &dst, bm_device_mem_t &src) {
bm_memcpy_d2d_byte(bm_handle, dst, 0, src, 0, bm_mem_get_device_size(src));
}
void Llama3::init(const std::vector<int> &devices, std::string model_path) {
// request bm_handle
std::cout << "Device [ ";
for (auto d : devices) {
std::cout << d << " ";
}
std::cout << "] loading ....\n";
for (auto d : devices) {
bm_handle_t h;
bm_status_t status = bm_dev_request(&h, d);
assert(BM_SUCCESS == status);
handles.push_back(h);
}
bm_handle = handles[0];
// create bmruntime
#ifdef SOC_TARGET
p_bmrt = bmrt_create(handles[0]);
#else
p_bmrt = bmrt_create_ex(handles.data(), handles.size());
#endif
assert(NULL != p_bmrt);
// load bmodel by file
printf("Model[%s] loading ....\n", model_path.c_str());
bool ret = bmrt_load_bmodel(p_bmrt, model_path.c_str());
assert(true == ret);
printf("Done!\n");
// net embed and lm_head
net_embed = bmrt_get_network_info(p_bmrt, "embedding");
net_embed_cache = bmrt_get_network_info(p_bmrt, "embedding_cache");
net_lm = bmrt_get_network_info(p_bmrt, "lm_head");
net_greedy_head = bmrt_get_network_info(p_bmrt, "greedy_head");
net_penalty_sample_head = bmrt_get_network_info(p_bmrt, "penalty_sample_head");
SEQLEN = net_embed->stages[0].input_shapes[0].dims[1]; // real seqlen
auto num_nets = bmrt_get_network_number(p_bmrt);
NUM_LAYERS = (num_nets - 5) / 2;
// resize
visited_tokens.resize(SEQLEN);
// net blocks
for (int i = 0; i < NUM_LAYERS; i++) {
auto block_name = "block_" + std::to_string(i);
auto cache_name = "block_cache_" + std::to_string(i);
net_blocks.emplace_back(bmrt_get_network_info(p_bmrt, block_name.c_str()));
net_blocks_cache.emplace_back(
bmrt_get_network_info(p_bmrt, cache_name.c_str()));
}
// kv cache
past_key.resize(NUM_LAYERS);
past_value.resize(NUM_LAYERS);
auto addr_mode = net_blocks_cache[0]->addr_mode;
io_alone = addr_mode == 1;
for (int i = 0; i < NUM_LAYERS; i++) {
assert(addr_mode == net_blocks_cache[i]->addr_mode);
if (io_alone) {
past_key[i] = net_blocks_cache[i]->stages[0].input_mems[3];
past_value[i] = net_blocks_cache[i]->stages[0].input_mems[4];
} else {
auto ret = bm_malloc_device_byte(bm_handle, &past_key[i],
net_blocks_cache[i]->max_input_bytes[3]);
assert(BM_SUCCESS == ret);
ret = bm_malloc_device_byte(bm_handle, &past_value[i],
net_blocks_cache[i]->max_input_bytes[4]);
assert(BM_SUCCESS == ret);
}
}
}
void Llama3::deinit() {
if (false == io_alone) {
for (int i = 0; i < NUM_LAYERS; i++) {
bm_free_device(bm_handle, past_key[i]);
bm_free_device(bm_handle, past_value[i]);
}
}
bmrt_destroy(p_bmrt);
for (auto h : handles) {
bm_dev_free(h);
}
}
void Llama3::head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
bmrt_tensor_with_device(
&in_tensors[0], logits_mem,
net->input_dtypes[0], net->stages[0].input_shapes[0]);
for (int i = 1; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[0].input_mems[i],
net->input_dtypes[i], net->stages[0].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[0].output_mems[i],
net->output_dtypes[i], net->stages[0].output_shapes[i]);
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
assert(ret);
bm_thread_sync(bm_handle);
}
int Llama3::greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
auto &out_mem = net->stages[0].output_mems[0];
head_launch(net, logits_mem);
int token = 0;
bm_memcpy_d2s(bm_handle, (void *)&token, out_mem);
return token;
}
int Llama3::penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
auto &in1_mem = net->stages[0].input_mems[1];
auto &in2_mem = net->stages[0].input_mems[2];
auto &in3_mem = net->stages[0].input_mems[3];
auto &in4_mem = net->stages[0].input_mems[4];
auto &out0_mem = net->stages[0].output_mems[0];
auto &out1_mem = net->stages[0].output_mems[1];
// repeat_penalty + top_p + top_k + temperature
std::vector<int> generated_tokens(SEQLEN, visited_tokens[token_length - 1]);
repeat_last_n = std::min(repeat_last_n, token_length);
std::copy(visited_tokens.begin() + token_length - repeat_last_n,
visited_tokens.begin() + token_length,
generated_tokens.begin());
bm_memcpy_s2d(bm_handle, in1_mem, (void *)generated_tokens.data());
bm_memcpy_s2d(bm_handle, in2_mem, (void *)&top_p);
bm_memcpy_s2d(bm_handle, in3_mem, (void *)&temperature);
bm_memcpy_s2d(bm_handle, in4_mem, (void *)&repeat_penalty);
// inference
head_launch(net, logits_mem);
// get logit & token
int candidate_num = net->stages[0].output_shapes[0].dims[1];
std::vector<float> probs(candidate_num);
bm_memcpy_d2s(bm_handle, probs.data(), out0_mem);
std::vector<int> tokens(candidate_num);
bm_memcpy_d2s(bm_handle, tokens.data(), out1_mem);
// penalty_sample
std::discrete_distribution<> dist(probs.begin(), probs.end());
return tokens[dist(sgen)];
}
int Llama3::forward_first(std::vector<int> &tokens) {
std::vector<int> position_id(SEQLEN, 0);
std::vector<uint16_t> attention_mask(SEQLEN * SEQLEN, ATTENTION_MASK);
std::copy(tokens.begin(), tokens.end(), visited_tokens.data());
token_length = tokens.size();
for (int i = 0; i < token_length; i++) {
position_id[i] = i;
}
for (int i = 0; i < token_length; i++) {
for (int j = 0; j < SEQLEN; j++) {
if (j <= i) {
attention_mask[i * SEQLEN + j] = 0;
}
}
}
// forward embeding
auto &in_mem = net_embed->stages[0].input_mems[0];
auto &out_mem = net_embed->stages[0].output_mems[0];
bm_memcpy_s2d(bm_handle, in_mem, (void *)visited_tokens.data());
net_launch(net_embed); // prefil embedding
// forward blocks
for (int idx = 0; idx < NUM_LAYERS; idx++) {
auto &in0_mem = net_blocks[idx]->stages[0].input_mems[0];
auto &in1_mem = net_blocks[idx]->stages[0].input_mems[1];
auto &in2_mem = net_blocks[idx]->stages[0].input_mems[2];
d2d(in0_mem, out_mem);
if (idx == 0) {
// only first time need copy
bm_memcpy_s2d(bm_handle, in1_mem, (void *)position_id.data());
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
}
net_launch(net_blocks[idx]);
out_mem = net_blocks[idx]->stages[0].output_mems[0];
d2d(past_key[idx], net_blocks[idx]->stages[0].output_mems[1]);
d2d(past_value[idx], net_blocks[idx]->stages[0].output_mems[2]);
}
// forward lmhead
int bytes = out_mem.size / SEQLEN;
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
bm_memcpy_d2d_byte(bm_handle, lm_in_mem, 0, out_mem,
(token_length - 1) * bytes, bytes);
net_launch(net_lm);
int token = 0;
if (generation_mode == "greedy") {
token = greedy_search(net_greedy_head, lm_out_mem);
} else if (generation_mode == "penalty_sample") {
token = penalty_sample(net_penalty_sample_head, lm_out_mem);
}
visited_tokens[token_length] = token;
token_length += 1;
return token;
}
int Llama3::forward_next() {
int cur_token = visited_tokens[token_length - 1];
std::vector<uint16_t> attention_mask(SEQLEN + 1, 0);
for (int i = token_length - 1; i < SEQLEN; i++) {
attention_mask[i] = ATTENTION_MASK;
}
int32_t position_id = token_length - 1;
// embedding
auto &in_mem = net_embed_cache->stages[0].input_mems[0];
auto &out_mem = net_embed_cache->stages[0].output_mems[0];
bm_memcpy_s2d(bm_handle, in_mem, (void *)&cur_token);
net_launch(net_embed_cache);
// blocks
int bytes =
bm_mem_get_device_size(net_blocks_cache[0]->stages[0].output_mems[1]);
int token_offset = (token_length - 1) * bytes;
for (int idx = 0; idx < NUM_LAYERS; idx++) {
auto &in0_mem = net_blocks_cache[idx]->stages[0].input_mems[0];
auto &in1_mem = net_blocks_cache[idx]->stages[0].input_mems[1];
auto &in2_mem = net_blocks_cache[idx]->stages[0].input_mems[2];
auto &in3_mem = net_blocks_cache[idx]->stages[0].input_mems[3];
auto &in4_mem = net_blocks_cache[idx]->stages[0].input_mems[4];
auto &out0_mem = net_blocks_cache[idx]->stages[0].output_mems[0];
auto &out1_mem = net_blocks_cache[idx]->stages[0].output_mems[1];
auto &out2_mem = net_blocks_cache[idx]->stages[0].output_mems[2];
d2d(in0_mem, out_mem);
if (io_alone) {
if (idx == 0) {
bm_memcpy_s2d(bm_handle, in1_mem, (void *)&position_id);
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
} else {
d2d(in1_mem, net_blocks_cache[0]->stages[0].input_mems[1]);
d2d(in2_mem, net_blocks_cache[0]->stages[0].input_mems[2]);
}
} else {
if (idx == 0) {
bm_memcpy_s2d(bm_handle, in1_mem, (void *)&position_id);
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
}
d2d(in3_mem, past_key[idx]);
d2d(in4_mem, past_value[idx]);
}
net_launch(net_blocks_cache[idx]);
out_mem = out0_mem;
bm_memcpy_d2d_byte(bm_handle, past_key[idx], token_offset, out1_mem, 0,
bytes);
bm_memcpy_d2d_byte(bm_handle, past_value[idx], token_offset, out2_mem, 0,
bytes);
}
// forward lmhead
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
d2d(lm_in_mem, out_mem);
net_launch(net_lm);
int token = 0;
if (generation_mode == "greedy") {
token = greedy_search(net_greedy_head, lm_out_mem);
} else if (generation_mode == "penalty_sample") {
token = penalty_sample(net_penalty_sample_head, lm_out_mem);
}
visited_tokens[token_length] = token;
token_length += 1;
return token;
}
std::vector<int> Llama3::generate(std::vector<int> &history_tokens, int EOS) {
if (history_tokens.empty()) {
printf("Sorry: your question is empty!!\n");
history_tokens.clear();
return {};
}
// make sure token not too large
if ((int)history_tokens.size() > SEQLEN - 10) {
history_tokens.clear();
printf("Error: your question is too large!\n");
return {};
}
std::vector<int> result_tokens;
int token = forward_first(history_tokens);
while (token != EOS && token_length < SEQLEN) {
result_tokens.emplace_back(token);
token = forward_next();
}
return result_tokens;
}
PYBIND11_MODULE(chat, m) {
pybind11::class_<Llama3>(m, "Llama3")
.def(pybind11::init<>())
.def("init", &Llama3::init)
.def("forward_first", &Llama3::forward_first)
.def("forward_next", &Llama3::forward_next)
.def("generate", &Llama3::generate)
.def("deinit", &Llama3::deinit)
.def_readwrite("SEQLEN", &Llama3::SEQLEN) // read SEQLEN in pipeline.py
.def_readwrite("token_length", &Llama3::token_length)
.def_readwrite("temperature", &Llama3::temperature)
.def_readwrite("top_p", &Llama3::top_p)
.def_readwrite("repeat_penalty", &Llama3::repeat_penalty)
.def_readwrite("repeat_last_n", &Llama3::repeat_last_n)
.def_readwrite("max_new_tokens", &Llama3::max_new_tokens)
.def_readwrite("generation_mode", &Llama3::generation_mode)
.def_readwrite("prompt_mode", &Llama3::prompt_mode);
}
|