JoshuaChak
commited on
Commit
•
893630b
1
Parent(s):
b7553eb
Upload chat.cpp with huggingface_hub
Browse files
chat.cpp
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
//===----------------------------------------------------------------------===//
|
2 |
+
//
|
3 |
+
// Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved.
|
4 |
+
//
|
5 |
+
// TPU-MLIR is licensed under the 2-Clause BSD License except for the
|
6 |
+
// third-party components.
|
7 |
+
//
|
8 |
+
//===----------------------------------------------------------------------===//
|
9 |
+
|
10 |
+
#include <iostream>
|
11 |
+
#include <cstdlib>
|
12 |
+
#include <vector>
|
13 |
+
#include <assert.h>
|
14 |
+
#include <chrono>
|
15 |
+
#include <algorithm>
|
16 |
+
#include <pybind11/pybind11.h>
|
17 |
+
#include <pybind11/stl.h>
|
18 |
+
#include "memory.h"
|
19 |
+
#include "bmruntime_interface.h"
|
20 |
+
#include <getopt.h>
|
21 |
+
#include <stdio.h>
|
22 |
+
#include <inttypes.h>
|
23 |
+
#include <random>
|
24 |
+
#include <numeric>
|
25 |
+
|
26 |
+
static const uint16_t ATTENTION_MASK = 0xF0E2;
|
27 |
+
|
28 |
+
class Llama3 {
|
29 |
+
public:
|
30 |
+
void init(const std::vector<int> &devid, std::string model_path);
|
31 |
+
void deinit();
|
32 |
+
int forward_first(std::vector<int> &tokens);
|
33 |
+
int forward_next();
|
34 |
+
std::vector<int> generate(std::vector<int> &history_tokens, int EOS);
|
35 |
+
|
36 |
+
std::mt19937 sgen;
|
37 |
+
Llama3() : sgen(std::random_device()()){};
|
38 |
+
|
39 |
+
private:
|
40 |
+
void net_launch(const bm_net_info_t *net, int stage_idx = 0);
|
41 |
+
inline void d2d(bm_device_mem_t &dst, bm_device_mem_t &src);
|
42 |
+
|
43 |
+
void head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
|
44 |
+
int greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
|
45 |
+
int penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
|
46 |
+
|
47 |
+
public:
|
48 |
+
int token_length;
|
49 |
+
int SEQLEN; // read from bmodel
|
50 |
+
int NUM_LAYERS; // read from bmodel
|
51 |
+
bool io_alone;
|
52 |
+
std::vector<int> visited_tokens;
|
53 |
+
|
54 |
+
// generation
|
55 |
+
float temperature;
|
56 |
+
float top_p;
|
57 |
+
float repeat_penalty;
|
58 |
+
int repeat_last_n;
|
59 |
+
int max_new_tokens;
|
60 |
+
std::string generation_mode;
|
61 |
+
std::string prompt_mode;
|
62 |
+
|
63 |
+
private:
|
64 |
+
std::vector<bm_handle_t> handles;
|
65 |
+
bm_handle_t bm_handle;
|
66 |
+
void *p_bmrt;
|
67 |
+
std::vector<const bm_net_info_t *> net_blocks;
|
68 |
+
std::vector<const bm_net_info_t *> net_blocks_cache;
|
69 |
+
const bm_net_info_t *net_embed;
|
70 |
+
const bm_net_info_t *net_embed_cache;
|
71 |
+
const bm_net_info_t *net_lm, *net_greedy_head, *net_penalty_sample_head;
|
72 |
+
std::vector<bm_device_mem_t> past_key;
|
73 |
+
std::vector<bm_device_mem_t> past_value;
|
74 |
+
};
|
75 |
+
|
76 |
+
void Llama3::net_launch(const bm_net_info_t *net, int stage_idx) {
|
77 |
+
std::vector<bm_tensor_t> in_tensors(net->input_num);
|
78 |
+
std::vector<bm_tensor_t> out_tensors(net->output_num);
|
79 |
+
|
80 |
+
for (int i = 0; i < net->input_num; i++) {
|
81 |
+
bmrt_tensor_with_device(
|
82 |
+
&in_tensors[i], net->stages[stage_idx].input_mems[i],
|
83 |
+
net->input_dtypes[i], net->stages[stage_idx].input_shapes[i]);
|
84 |
+
}
|
85 |
+
for (int i = 0; i < net->output_num; i++) {
|
86 |
+
bmrt_tensor_with_device(
|
87 |
+
&out_tensors[i], net->stages[stage_idx].output_mems[i],
|
88 |
+
net->output_dtypes[i], net->stages[stage_idx].output_shapes[i]);
|
89 |
+
}
|
90 |
+
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
|
91 |
+
net->input_num, out_tensors.data(),
|
92 |
+
net->output_num, true, false);
|
93 |
+
assert(ret);
|
94 |
+
bm_thread_sync(bm_handle);
|
95 |
+
}
|
96 |
+
|
97 |
+
void Llama3::d2d(bm_device_mem_t &dst, bm_device_mem_t &src) {
|
98 |
+
bm_memcpy_d2d_byte(bm_handle, dst, 0, src, 0, bm_mem_get_device_size(src));
|
99 |
+
}
|
100 |
+
|
101 |
+
void Llama3::init(const std::vector<int> &devices, std::string model_path) {
|
102 |
+
|
103 |
+
// request bm_handle
|
104 |
+
std::cout << "Device [ ";
|
105 |
+
for (auto d : devices) {
|
106 |
+
std::cout << d << " ";
|
107 |
+
}
|
108 |
+
std::cout << "] loading ....\n";
|
109 |
+
for (auto d : devices) {
|
110 |
+
bm_handle_t h;
|
111 |
+
bm_status_t status = bm_dev_request(&h, d);
|
112 |
+
assert(BM_SUCCESS == status);
|
113 |
+
handles.push_back(h);
|
114 |
+
}
|
115 |
+
bm_handle = handles[0];
|
116 |
+
|
117 |
+
// create bmruntime
|
118 |
+
#ifdef SOC_TARGET
|
119 |
+
p_bmrt = bmrt_create(handles[0]);
|
120 |
+
#else
|
121 |
+
p_bmrt = bmrt_create_ex(handles.data(), handles.size());
|
122 |
+
#endif
|
123 |
+
assert(NULL != p_bmrt);
|
124 |
+
|
125 |
+
// load bmodel by file
|
126 |
+
printf("Model[%s] loading ....\n", model_path.c_str());
|
127 |
+
bool ret = bmrt_load_bmodel(p_bmrt, model_path.c_str());
|
128 |
+
assert(true == ret);
|
129 |
+
printf("Done!\n");
|
130 |
+
|
131 |
+
// net embed and lm_head
|
132 |
+
net_embed = bmrt_get_network_info(p_bmrt, "embedding");
|
133 |
+
net_embed_cache = bmrt_get_network_info(p_bmrt, "embedding_cache");
|
134 |
+
net_lm = bmrt_get_network_info(p_bmrt, "lm_head");
|
135 |
+
net_greedy_head = bmrt_get_network_info(p_bmrt, "greedy_head");
|
136 |
+
net_penalty_sample_head = bmrt_get_network_info(p_bmrt, "penalty_sample_head");
|
137 |
+
SEQLEN = net_embed->stages[0].input_shapes[0].dims[1]; // real seqlen
|
138 |
+
auto num_nets = bmrt_get_network_number(p_bmrt);
|
139 |
+
NUM_LAYERS = (num_nets - 5) / 2;
|
140 |
+
|
141 |
+
// resize
|
142 |
+
visited_tokens.resize(SEQLEN);
|
143 |
+
|
144 |
+
// net blocks
|
145 |
+
for (int i = 0; i < NUM_LAYERS; i++) {
|
146 |
+
auto block_name = "block_" + std::to_string(i);
|
147 |
+
auto cache_name = "block_cache_" + std::to_string(i);
|
148 |
+
net_blocks.emplace_back(bmrt_get_network_info(p_bmrt, block_name.c_str()));
|
149 |
+
net_blocks_cache.emplace_back(
|
150 |
+
bmrt_get_network_info(p_bmrt, cache_name.c_str()));
|
151 |
+
}
|
152 |
+
|
153 |
+
// kv cache
|
154 |
+
past_key.resize(NUM_LAYERS);
|
155 |
+
past_value.resize(NUM_LAYERS);
|
156 |
+
auto addr_mode = net_blocks_cache[0]->addr_mode;
|
157 |
+
io_alone = addr_mode == 1;
|
158 |
+
for (int i = 0; i < NUM_LAYERS; i++) {
|
159 |
+
assert(addr_mode == net_blocks_cache[i]->addr_mode);
|
160 |
+
if (io_alone) {
|
161 |
+
past_key[i] = net_blocks_cache[i]->stages[0].input_mems[3];
|
162 |
+
past_value[i] = net_blocks_cache[i]->stages[0].input_mems[4];
|
163 |
+
} else {
|
164 |
+
auto ret = bm_malloc_device_byte(bm_handle, &past_key[i],
|
165 |
+
net_blocks_cache[i]->max_input_bytes[3]);
|
166 |
+
assert(BM_SUCCESS == ret);
|
167 |
+
ret = bm_malloc_device_byte(bm_handle, &past_value[i],
|
168 |
+
net_blocks_cache[i]->max_input_bytes[4]);
|
169 |
+
assert(BM_SUCCESS == ret);
|
170 |
+
}
|
171 |
+
}
|
172 |
+
}
|
173 |
+
|
174 |
+
void Llama3::deinit() {
|
175 |
+
if (false == io_alone) {
|
176 |
+
for (int i = 0; i < NUM_LAYERS; i++) {
|
177 |
+
bm_free_device(bm_handle, past_key[i]);
|
178 |
+
bm_free_device(bm_handle, past_value[i]);
|
179 |
+
}
|
180 |
+
}
|
181 |
+
bmrt_destroy(p_bmrt);
|
182 |
+
for (auto h : handles) {
|
183 |
+
bm_dev_free(h);
|
184 |
+
}
|
185 |
+
}
|
186 |
+
|
187 |
+
void Llama3::head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
|
188 |
+
std::vector<bm_tensor_t> in_tensors(net->input_num);
|
189 |
+
std::vector<bm_tensor_t> out_tensors(net->output_num);
|
190 |
+
|
191 |
+
bmrt_tensor_with_device(
|
192 |
+
&in_tensors[0], logits_mem,
|
193 |
+
net->input_dtypes[0], net->stages[0].input_shapes[0]);
|
194 |
+
|
195 |
+
for (int i = 1; i < net->input_num; i++) {
|
196 |
+
bmrt_tensor_with_device(
|
197 |
+
&in_tensors[i], net->stages[0].input_mems[i],
|
198 |
+
net->input_dtypes[i], net->stages[0].input_shapes[i]);
|
199 |
+
}
|
200 |
+
for (int i = 0; i < net->output_num; i++) {
|
201 |
+
bmrt_tensor_with_device(
|
202 |
+
&out_tensors[i], net->stages[0].output_mems[i],
|
203 |
+
net->output_dtypes[i], net->stages[0].output_shapes[i]);
|
204 |
+
}
|
205 |
+
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
|
206 |
+
net->input_num, out_tensors.data(),
|
207 |
+
net->output_num, true, false);
|
208 |
+
assert(ret);
|
209 |
+
bm_thread_sync(bm_handle);
|
210 |
+
}
|
211 |
+
|
212 |
+
int Llama3::greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
|
213 |
+
auto &out_mem = net->stages[0].output_mems[0];
|
214 |
+
head_launch(net, logits_mem);
|
215 |
+
int token = 0;
|
216 |
+
bm_memcpy_d2s(bm_handle, (void *)&token, out_mem);
|
217 |
+
return token;
|
218 |
+
}
|
219 |
+
|
220 |
+
int Llama3::penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
|
221 |
+
auto &in1_mem = net->stages[0].input_mems[1];
|
222 |
+
auto &in2_mem = net->stages[0].input_mems[2];
|
223 |
+
auto &in3_mem = net->stages[0].input_mems[3];
|
224 |
+
auto &in4_mem = net->stages[0].input_mems[4];
|
225 |
+
auto &out0_mem = net->stages[0].output_mems[0];
|
226 |
+
auto &out1_mem = net->stages[0].output_mems[1];
|
227 |
+
|
228 |
+
// repeat_penalty + top_p + top_k + temperature
|
229 |
+
std::vector<int> generated_tokens(SEQLEN, visited_tokens[token_length - 1]);
|
230 |
+
repeat_last_n = std::min(repeat_last_n, token_length);
|
231 |
+
std::copy(visited_tokens.begin() + token_length - repeat_last_n,
|
232 |
+
visited_tokens.begin() + token_length,
|
233 |
+
generated_tokens.begin());
|
234 |
+
bm_memcpy_s2d(bm_handle, in1_mem, (void *)generated_tokens.data());
|
235 |
+
bm_memcpy_s2d(bm_handle, in2_mem, (void *)&top_p);
|
236 |
+
bm_memcpy_s2d(bm_handle, in3_mem, (void *)&temperature);
|
237 |
+
bm_memcpy_s2d(bm_handle, in4_mem, (void *)&repeat_penalty);
|
238 |
+
|
239 |
+
// inference
|
240 |
+
head_launch(net, logits_mem);
|
241 |
+
|
242 |
+
// get logit & token
|
243 |
+
int candidate_num = net->stages[0].output_shapes[0].dims[1];
|
244 |
+
std::vector<float> probs(candidate_num);
|
245 |
+
bm_memcpy_d2s(bm_handle, probs.data(), out0_mem);
|
246 |
+
std::vector<int> tokens(candidate_num);
|
247 |
+
bm_memcpy_d2s(bm_handle, tokens.data(), out1_mem);
|
248 |
+
|
249 |
+
// penalty_sample
|
250 |
+
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
251 |
+
return tokens[dist(sgen)];
|
252 |
+
}
|
253 |
+
|
254 |
+
int Llama3::forward_first(std::vector<int> &tokens) {
|
255 |
+
std::vector<int> position_id(SEQLEN, 0);
|
256 |
+
std::vector<uint16_t> attention_mask(SEQLEN * SEQLEN, ATTENTION_MASK);
|
257 |
+
std::copy(tokens.begin(), tokens.end(), visited_tokens.data());
|
258 |
+
|
259 |
+
token_length = tokens.size();
|
260 |
+
|
261 |
+
for (int i = 0; i < token_length; i++) {
|
262 |
+
position_id[i] = i;
|
263 |
+
}
|
264 |
+
for (int i = 0; i < token_length; i++) {
|
265 |
+
for (int j = 0; j < SEQLEN; j++) {
|
266 |
+
if (j <= i) {
|
267 |
+
attention_mask[i * SEQLEN + j] = 0;
|
268 |
+
}
|
269 |
+
}
|
270 |
+
}
|
271 |
+
|
272 |
+
// forward embeding
|
273 |
+
auto &in_mem = net_embed->stages[0].input_mems[0];
|
274 |
+
auto &out_mem = net_embed->stages[0].output_mems[0];
|
275 |
+
bm_memcpy_s2d(bm_handle, in_mem, (void *)visited_tokens.data());
|
276 |
+
net_launch(net_embed); // prefil embedding
|
277 |
+
|
278 |
+
// forward blocks
|
279 |
+
for (int idx = 0; idx < NUM_LAYERS; idx++) {
|
280 |
+
auto &in0_mem = net_blocks[idx]->stages[0].input_mems[0];
|
281 |
+
auto &in1_mem = net_blocks[idx]->stages[0].input_mems[1];
|
282 |
+
auto &in2_mem = net_blocks[idx]->stages[0].input_mems[2];
|
283 |
+
d2d(in0_mem, out_mem);
|
284 |
+
if (idx == 0) {
|
285 |
+
// only first time need copy
|
286 |
+
bm_memcpy_s2d(bm_handle, in1_mem, (void *)position_id.data());
|
287 |
+
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
|
288 |
+
}
|
289 |
+
net_launch(net_blocks[idx]);
|
290 |
+
out_mem = net_blocks[idx]->stages[0].output_mems[0];
|
291 |
+
d2d(past_key[idx], net_blocks[idx]->stages[0].output_mems[1]);
|
292 |
+
d2d(past_value[idx], net_blocks[idx]->stages[0].output_mems[2]);
|
293 |
+
}
|
294 |
+
|
295 |
+
// forward lmhead
|
296 |
+
int bytes = out_mem.size / SEQLEN;
|
297 |
+
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
|
298 |
+
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
|
299 |
+
bm_memcpy_d2d_byte(bm_handle, lm_in_mem, 0, out_mem,
|
300 |
+
(token_length - 1) * bytes, bytes);
|
301 |
+
net_launch(net_lm);
|
302 |
+
|
303 |
+
int token = 0;
|
304 |
+
if (generation_mode == "greedy") {
|
305 |
+
token = greedy_search(net_greedy_head, lm_out_mem);
|
306 |
+
} else if (generation_mode == "penalty_sample") {
|
307 |
+
token = penalty_sample(net_penalty_sample_head, lm_out_mem);
|
308 |
+
}
|
309 |
+
|
310 |
+
visited_tokens[token_length] = token;
|
311 |
+
token_length += 1;
|
312 |
+
return token;
|
313 |
+
}
|
314 |
+
|
315 |
+
int Llama3::forward_next() {
|
316 |
+
int cur_token = visited_tokens[token_length - 1];
|
317 |
+
|
318 |
+
std::vector<uint16_t> attention_mask(SEQLEN + 1, 0);
|
319 |
+
for (int i = token_length - 1; i < SEQLEN; i++) {
|
320 |
+
attention_mask[i] = ATTENTION_MASK;
|
321 |
+
}
|
322 |
+
int32_t position_id = token_length - 1;
|
323 |
+
|
324 |
+
// embedding
|
325 |
+
auto &in_mem = net_embed_cache->stages[0].input_mems[0];
|
326 |
+
auto &out_mem = net_embed_cache->stages[0].output_mems[0];
|
327 |
+
bm_memcpy_s2d(bm_handle, in_mem, (void *)&cur_token);
|
328 |
+
net_launch(net_embed_cache);
|
329 |
+
|
330 |
+
// blocks
|
331 |
+
int bytes =
|
332 |
+
bm_mem_get_device_size(net_blocks_cache[0]->stages[0].output_mems[1]);
|
333 |
+
int token_offset = (token_length - 1) * bytes;
|
334 |
+
for (int idx = 0; idx < NUM_LAYERS; idx++) {
|
335 |
+
auto &in0_mem = net_blocks_cache[idx]->stages[0].input_mems[0];
|
336 |
+
auto &in1_mem = net_blocks_cache[idx]->stages[0].input_mems[1];
|
337 |
+
auto &in2_mem = net_blocks_cache[idx]->stages[0].input_mems[2];
|
338 |
+
auto &in3_mem = net_blocks_cache[idx]->stages[0].input_mems[3];
|
339 |
+
auto &in4_mem = net_blocks_cache[idx]->stages[0].input_mems[4];
|
340 |
+
auto &out0_mem = net_blocks_cache[idx]->stages[0].output_mems[0];
|
341 |
+
auto &out1_mem = net_blocks_cache[idx]->stages[0].output_mems[1];
|
342 |
+
auto &out2_mem = net_blocks_cache[idx]->stages[0].output_mems[2];
|
343 |
+
d2d(in0_mem, out_mem);
|
344 |
+
if (io_alone) {
|
345 |
+
if (idx == 0) {
|
346 |
+
bm_memcpy_s2d(bm_handle, in1_mem, (void *)&position_id);
|
347 |
+
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
|
348 |
+
} else {
|
349 |
+
d2d(in1_mem, net_blocks_cache[0]->stages[0].input_mems[1]);
|
350 |
+
d2d(in2_mem, net_blocks_cache[0]->stages[0].input_mems[2]);
|
351 |
+
}
|
352 |
+
} else {
|
353 |
+
if (idx == 0) {
|
354 |
+
bm_memcpy_s2d(bm_handle, in1_mem, (void *)&position_id);
|
355 |
+
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
|
356 |
+
}
|
357 |
+
d2d(in3_mem, past_key[idx]);
|
358 |
+
d2d(in4_mem, past_value[idx]);
|
359 |
+
}
|
360 |
+
net_launch(net_blocks_cache[idx]);
|
361 |
+
out_mem = out0_mem;
|
362 |
+
bm_memcpy_d2d_byte(bm_handle, past_key[idx], token_offset, out1_mem, 0,
|
363 |
+
bytes);
|
364 |
+
bm_memcpy_d2d_byte(bm_handle, past_value[idx], token_offset, out2_mem, 0,
|
365 |
+
bytes);
|
366 |
+
}
|
367 |
+
|
368 |
+
// forward lmhead
|
369 |
+
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
|
370 |
+
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
|
371 |
+
d2d(lm_in_mem, out_mem);
|
372 |
+
net_launch(net_lm);
|
373 |
+
|
374 |
+
int token = 0;
|
375 |
+
if (generation_mode == "greedy") {
|
376 |
+
token = greedy_search(net_greedy_head, lm_out_mem);
|
377 |
+
} else if (generation_mode == "penalty_sample") {
|
378 |
+
token = penalty_sample(net_penalty_sample_head, lm_out_mem);
|
379 |
+
}
|
380 |
+
|
381 |
+
visited_tokens[token_length] = token;
|
382 |
+
token_length += 1;
|
383 |
+
return token;
|
384 |
+
}
|
385 |
+
|
386 |
+
|
387 |
+
std::vector<int> Llama3::generate(std::vector<int> &history_tokens, int EOS) {
|
388 |
+
if (history_tokens.empty()) {
|
389 |
+
printf("Sorry: your question is empty!!\n");
|
390 |
+
history_tokens.clear();
|
391 |
+
return {};
|
392 |
+
}
|
393 |
+
|
394 |
+
// make sure token not too large
|
395 |
+
if ((int)history_tokens.size() > SEQLEN - 10) {
|
396 |
+
history_tokens.clear();
|
397 |
+
printf("Error: your question is too large!\n");
|
398 |
+
return {};
|
399 |
+
}
|
400 |
+
|
401 |
+
std::vector<int> result_tokens;
|
402 |
+
int token = forward_first(history_tokens);
|
403 |
+
while (token != EOS && token_length < SEQLEN) {
|
404 |
+
result_tokens.emplace_back(token);
|
405 |
+
token = forward_next();
|
406 |
+
}
|
407 |
+
|
408 |
+
return result_tokens;
|
409 |
+
}
|
410 |
+
|
411 |
+
PYBIND11_MODULE(chat, m) {
|
412 |
+
pybind11::class_<Llama3>(m, "Llama3")
|
413 |
+
.def(pybind11::init<>())
|
414 |
+
.def("init", &Llama3::init)
|
415 |
+
.def("forward_first", &Llama3::forward_first)
|
416 |
+
.def("forward_next", &Llama3::forward_next)
|
417 |
+
.def("generate", &Llama3::generate)
|
418 |
+
.def("deinit", &Llama3::deinit)
|
419 |
+
.def_readwrite("SEQLEN", &Llama3::SEQLEN) // read SEQLEN in pipeline.py
|
420 |
+
.def_readwrite("token_length", &Llama3::token_length)
|
421 |
+
.def_readwrite("temperature", &Llama3::temperature)
|
422 |
+
.def_readwrite("top_p", &Llama3::top_p)
|
423 |
+
.def_readwrite("repeat_penalty", &Llama3::repeat_penalty)
|
424 |
+
.def_readwrite("repeat_last_n", &Llama3::repeat_last_n)
|
425 |
+
.def_readwrite("max_new_tokens", &Llama3::max_new_tokens)
|
426 |
+
.def_readwrite("generation_mode", &Llama3::generation_mode)
|
427 |
+
.def_readwrite("prompt_mode", &Llama3::prompt_mode);
|
428 |
+
}
|