Jamba Chat LoRA

This is a LoRA fine-tuned version of the Jamba model trained on chat conversations.

Model Description

  • Base Model: LaferriereJC/jamba_550M_trained
  • Training Data: UltraChat dataset
  • Task: Conversational AI
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig

# Load the model
model = AutoModelForCausalLM.from_pretrained(
    "LaferriereJC/jamba_550M_trained",
    trust_remote_code=True
)
model = PeftModel.from_pretrained(model, "your-username/jamba-chat-lora")

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("LaferriereJC/jamba_550M_trained")

# Example usage
text = "User: How are you today?\nAssistant:"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Details

  • Training Data: UltraChat dataset (subset)
  • LoRA Config:
    • Rank: 16
    • Alpha: 32
    • Target Modules: Last layer feed forward experts
    • Dropout: 0.1
  • Training Parameters:
    • Learning Rate: 5e-4
    • Optimizer: AdamW (32-bit)
    • LR Scheduler: Cosine
    • Warmup Ratio: 0.03
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.