metadata
license: mit
widget:
- text: |
<|system|>
You are a helpful assistant.</s>
<|user|>
Can you explain to me how quantum computing works?</s>
<|assistant|>
model-index:
- name: Cinder-Phi-2-V1-F16-gguf
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 58.28
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.04
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.46
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.5
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.66
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.23
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 23.57
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 22.45
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.25
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.97
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
I am really enjoying this version of Cinder. More information coming. Training data similar to openhermes2.5 with some added math, STEM, and reasoning mostly from OpenOrca. As well as Cinder character specific data, a mix of RAG generated Q and A of world knowledge, STEM topics, and Cinder Character data. I suplimented the Cinder character with an abreviated Samantha dataset edited for Cinder and removed a lot of the negative responses. Model Overview Cinder is an AI chatbot tailored for engaging users in scientific and educational conversations, offering companionship, and sparking imaginative exploration.
Chat example from LM Studio:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 58.86 |
AI2 Reasoning Challenge (25-Shot) | 58.28 |
HellaSwag (10-Shot) | 74.04 |
MMLU (5-Shot) | 54.46 |
TruthfulQA (0-shot) | 44.50 |
Winogrande (5-shot) | 74.66 |
GSM8k (5-shot) | 47.23 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 10.86 |
IFEval (0-Shot) | 23.57 |
BBH (3-Shot) | 22.45 |
MATH Lvl 5 (4-Shot) | 0.00 |
GPQA (0-shot) | 4.25 |
MuSR (0-shot) | 1.97 |
MMLU-PRO (5-shot) | 12.90 |