File size: 54,412 Bytes
a83b3b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
# coding=utf-8
# Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on the Wonderful Matrices paper implementation.
#
#     https://arxiv.org/abs/2407.16958
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Doge model."""

import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    # is_einx_available,
    logging,
    replace_return_docstrings,
)
from .configuration_doge import DogeConfig

try:
    from einx import add as einx_add
except ImportError:
    einx_add = None


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "DogeConfig"


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """

        RMSNorm is equivalent to T5LayerNorm

        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class RotaryEmbedding(nn.Module):
    def __init__(self, config: Optional[DogeConfig] = None):
        super().__init__()
        self.rope_kwargs = {}

        if config.rope_scaling is None:
            self.rope_type = "default"
        else:
            self.rope_type = config.rope_scaling
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings
        self.base = config.rope_theta

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, **self.rope_kwargs)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _dynamic_frequency_update(self, position_ids, device):
        """

        dynamic RoPE layers should recompute `inv_freq` in the following situations:

        1 - growing beyond the cached sequence length (allow scaling)

        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)

        """
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            inv_freq, self.attention_scaling = self.rope_init_fn(
                self.config, device, seq_len=seq_len, **self.rope_kwargs
            )
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
            self.max_seq_len_cached = seq_len

        if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._dynamic_frequency_update(position_ids, device=x.device)

        # core RoPE block
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()

        cos = cos * self.attention_scaling
        sin = sin * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """

    Rotates half the hidden dims of the input.

    """
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.



    Args:

        q (`torch.Tensor`): The query tensor.

        k (`torch.Tensor`): The key tensor.

        cos (`torch.Tensor`): The cosine part of the rotary embedding.

        sin (`torch.Tensor`): The sine part of the rotary embedding.

        position_ids (`torch.Tensor`, *optional*):

            Deprecated and unused.

        unsqueeze_dim (`int`, *optional*, defaults to 1):

            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and

            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note

            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and

            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes

            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have

            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.

    Returns:

        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.

    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class DogeInnerFuncAttn(nn.Module):
    """Inner Function Attention from 'Wonderful Matrices' paper."""

    def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
        super().__init__()

        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.attention_dropout = config.attention_dropout

        # for accuracy of attention scores, we do not use GQA
        self.attention_head_dim = self.hidden_dim // self.num_attention_heads
        self.num_inner_values = config.num_inner_values
        self.num_inner_value_heads = config.num_inner_value_heads
        self.num_value_per_head = config.num_value_per_head
        self.inner_values_retrieval_dim = config.inner_values_retrieval_size

        # Q and K projections
        self.q_proj = nn.Linear(
            self.hidden_dim,
            self.num_attention_heads * self.attention_head_dim,
            bias=config.hidden_bias,
        )
        self.k_proj = nn.Linear(
            self.hidden_dim,
            self.num_attention_heads * self.attention_head_dim,
            bias=config.hidden_bias,
        )

        # dynamic mask for the QK^T attention score matrix
        self.dynamic_mask = nn.Parameter(
            torch.round(torch.ones(self.num_attention_heads, config.max_position_embeddings))
        )

        # queries and keys for retrieval V
        self.v_queries = nn.Linear(
            self.hidden_dim,
            self.num_inner_value_heads * self.inner_values_retrieval_dim,
            bias=config.hidden_bias,
        )
        self.v_keys = nn.Parameter(
            torch.zeros(
                self.num_inner_value_heads,
                self.inner_values_retrieval_dim,
                self.num_inner_values,
            )
        )

        # V for inner function
        self.v_embed = nn.Embedding(
            self.num_inner_values,
            self.hidden_dim,
        )

        self.o_proj = nn.Linear(
            self.hidden_dim,
            self.hidden_dim,
            bias=config.hidden_bias,
        )

    def _update_causal_mask(

        self,

        attention_mask: torch.Tensor = None,

        input_tensor: torch.Tensor = None,

        cache_position: torch.Tensor = None,

        past_key_values: Cache = None,

        output_attentions: bool = False,

    ):
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # in case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position_and_dynamic_mask(
            attention_mask=attention_mask,
            dynamic_mask=self.dynamic_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position_and_dynamic_mask(

        attention_mask: torch.Tensor = None,

        dynamic_mask: torch.Tensor = None,

        sequence_length: int = None,

        target_length: int = None,

        dtype: torch.dtype = None,

        device: torch.device = None,

        cache_position: torch.Tensor = None,

        batch_size: int = None,

        **kwargs,

    ):
        """

        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape

        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.



        Args:

            attention_mask (`torch.Tensor`):

                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape

                `(batch_size, 1, query_length, key_value_length)`.

            dynamic_mask (`torch.Tensor`):

                A 2D dynamic mask of shape `(num_heads, max_position_embeddings)`.

            sequence_length (`int`):

                The sequence length being processed.

            target_length (`int`):

                The target length: when generating with static cache, the mask should be as long as the static cache,

                to account for the 0 padding, the part of the cache that is not filled yet.

            dtype (`torch.dtype`):

                The dtype to use for the 4D attention mask.

            device (`torch.device`):

                The device to plcae the 4D attention mask on.

            cache_position (`torch.Tensor`):

                Indices depicting the position of the input sequence tokens in the sequence.

            batch_size (`torch.Tensor`):

                Batch size.

        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            num_heads = 1 if dynamic_mask is None else dynamic_mask.size(0)
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length),
                fill_value=min_dtype,
                dtype=dtype,
                device=device,
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, num_heads, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                attention_mask = attention_mask[:, None, None, :].expand(-1, num_heads, 1, -1)
                if dynamic_mask is not None:
                    dynamic_mask = dynamic_mask[None, :, None, :mask_length].expand(batch_size, -1, 1, -1)
                    attention_mask = attention_mask.clone() * dynamic_mask

                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask == 0, min_dtype
                )

        return causal_mask

    def inner_func(

        self,

        hidden_states: torch.Tensor,

    ) -> torch.Tensor:
        """

        Each value can share weights with other values to increase the expressive power

        """
        bsz, seq_len, _ = hidden_states.shape

        v_queries = self.v_queries(hidden_states)
        v_queries = v_queries.view(bsz, seq_len, self.num_inner_value_heads, -1).transpose(1, 2)
        sim = torch.matmul(v_queries, self.v_keys)
        v_embed = self.v_embed(sim.topk(k=self.num_value_per_head, dim=-1).indices)
        # b h t k d -> b t d
        v = hidden_states * v_embed.sum(dim=-2).sum(dim=-3)
        return v

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.Tensor, Optional[Cache]]:
        bsz, q_len, _ = hidden_states.shape

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.inner_func(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
            1, 2
        )
        key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
            1, 2
        )
        value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
            1, 2
        )

        cos, sin = position_embeddings
        query_states, query_states = apply_QK_rotary_pos_emb(query_states, query_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # compute attention scores matrix
        attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / math.sqrt(self.attention_head_dim)

        # add mask to attention scores
        causal_mask = self._update_causal_mask(attention_mask, hidden_states, cache_position, past_key_value)
        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

        # upcast attention scores to fp32
        attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)

        # apply attention scores to value states
        attn_output = torch.matmul(attn_weights, value_states)

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, -1)
        attn_output = self.o_proj(attn_output)

        return attn_output, past_key_value


class DogeSdpaInnerFuncAttn(DogeInnerFuncAttn):
    """

    Doge Inner Function Attention module using torch.nn.functional.scaled_dot_product_attention.

    This module inherits from `DogeInnerFuncAttn` as the weights of the module stays untouched.

    The only changes are on the forward pass to adapt to SDPA API.

    """

    # Adapted from LlamaAttention.forward
    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.Tensor, Optional[Cache]]:
        bsz, q_len, _ = hidden_states.shape

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.inner_func(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, query_states = apply_QK_rotary_pos_emb(query_states, query_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        causal_mask = self._update_causal_mask(attention_mask, hidden_states, cache_position, past_key_value)
        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]

        query_states = query_states.contiguous()
        key_states = key_states.contiguous()
        value_states = value_states.contiguous()

        attn_output = F.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)
        attn_output = self.o_proj(attn_output)

        return attn_output, past_key_value


DOGE_ATTENTION_CLASSES = {
    "eager": DogeInnerFuncAttn,
    "sdpa": DogeSdpaInnerFuncAttn,
}


class DogeCDMoE(nn.Module):
    """Cross-Domain Mixture of Experts from 'Wonderful Matrices' paper."""

    def __init__(self, config: DogeConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.act_fn = ACT2FN[config.hidden_act]
        self.intermediate_dim = config.intermediate_size

        self.private_expert_retrieval_dim = config.private_expert_retrieval_size
        self.num_cdmmoe_experts = config.num_cdmmoe_experts
        self.num_cdmmoe_heads = config.num_cdmmoe_heads
        self.num_cdmmoe_experts_per_head = config.num_cdmmoe_experts_per_head

        # cross domain
        self.up_proj = nn.Linear(
            self.hidden_dim,
            self.intermediate_dim,
            bias=config.hidden_bias,
        )
        self.down_proj = nn.Linear(
            self.intermediate_dim,
            self.hidden_dim,
            bias=config.hidden_bias,
        )

        # queries and keys for retrieval private experts
        self.queries = nn.Linear(
            self.hidden_dim,
            self.num_cdmmoe_heads * self.private_expert_retrieval_dim,
            bias=False,
        )
        self.num_keys = int(math.sqrt(self.num_cdmmoe_experts))
        self.keys = nn.Parameter(
            torch.zeros(
                self.num_cdmmoe_heads,
                self.num_keys,
                2,
                self.private_expert_retrieval_dim // 2,
            )
        )

        # private experts
        self.down_embed  = nn.Embedding(
            self.num_cdmmoe_experts,
            self.hidden_dim,
        )
        self.up_embed = nn.Embedding(
            self.num_cdmmoe_experts,
            self.hidden_dim,
        )
        

    def forward(

        self,

        hidden_states: torch.Tensor,

        **kwargs,

    ) -> torch.Tensor:
        bsz, seq_len, _ = hidden_states.shape

        # get similarity with queries and keys
        queries = self.queries(hidden_states)
        queries = queries.view(bsz, seq_len, 2, self.num_cdmmoe_heads, -1).permute(2, 0, 1, 3, 4)
        sim = torch.einsum("p b t h n, h k p n -> p b t h k", queries, self.keys)

        # get expert scores and indices with the highest similarity
        (scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.num_cdmmoe_experts_per_head, dim=-1)
        if einx_add is not None:
            all_scores = einx_add("... i, ... j -> ... (i j)", scores_x, scores_y)
            all_indices = einx_add("... i, ... j -> ... (i j)", indices_x * self.num_keys, indices_y)
        else:
            all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
            all_scores = all_scores.view(*scores_x.shape[:-1], -1)
            all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
            all_indices = all_indices.view(*indices_x.shape[:-1], -1)
        scores, pk_indices = all_scores.topk(self.num_cdmmoe_experts_per_head, dim=-1)
        indices = all_indices.gather(-1, pk_indices)

        # get related expert embeddings based on indices
        down_embed = self.down_embed(indices)
        up_embed = self.up_embed(indices)

        # efficient retrieval of private experts
        experts_weights = self.act_fn(torch.einsum("b t d, b t h k d -> b t h k", hidden_states, down_embed) * scores.softmax(dim=-1))
        experts_states = torch.einsum("b t h k, b t h k d -> b t d", experts_weights, up_embed)

        # mix with shared parameters of cross domain
        hidden_states = self.down_proj(self.act_fn(self.up_proj(hidden_states)))
        hidden_states = hidden_states + experts_states
        return hidden_states


class DogeDecoderLayer(nn.Module):
    def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.hidden_dropout = config.hidden_dropout

        self.in_attn_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.attn = DOGE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
        self.in_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.feed_forward = DogeCDMoE(config)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """

        Args:

            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`

            attention_mask (`torch.FloatTensor`, *optional*):

                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,

                query_sequence_length, key_sequence_length)` if default attention is used.

            output_attentions (`bool`, *optional*):

                Whether or not to return the attentions tensors of all attention layers. See `attentions` under

                returned tensors for more detail.

            use_cache (`bool`, *optional*):

                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding

                (see `past_key_values`).

            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states

            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):

                Indices depicting the position of the input sequence tokens in the sequence

            position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):

                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,

                with `head_dim` being the embedding dimension of each attention head.

            kwargs (`dict`, *optional*):

                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code

                into the model

        """

        # sequence transformation
        residual = hidden_states
        hidden_states = self.in_attn_layernorm(hidden_states)
        hidden_states, present_key_value = self.attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        self_attn_weights = None
        hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
        hidden_states = residual + hidden_states

        # state transformation
        residual = hidden_states
        hidden_states = self.in_ff_layernorm(hidden_states)
        hidden_states = self.feed_forward(hidden_states)
        hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


@add_start_docstrings("The bare Doge Model outputting raw hidden-states without any specific head on top.")
class DogePreTrainedModel(PreTrainedModel):
    config_class = DogeConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["DogeDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


DOGE_INPUTS_DOCSTRING = r"""

    Args:

        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide

            it.



            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            [What are input IDs?](../glossary#input-ids)

        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



            - 1 for tokens that are **not masked**,

            - 0 for tokens that are **masked**.



            [What are attention masks?](../glossary#attention-mask)



            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see

            `past_key_values`).



            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]

            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more

            information on the default strategy.



            - 1 indicates the head is **not masked**,

            - 0 indicates the head is **masked**.

        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,

            config.n_positions - 1]`.



            [What are position IDs?](../glossary#position-ids)

        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):

            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention

            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`

            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.



            Two formats are allowed:

            - a [`~cache_utils.Cache`] instance, see our

            [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);

            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of

            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy

            cache format.



            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the

            legacy cache format will be returned.



            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't

            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`

            of shape `(batch_size, sequence_length)`.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This

            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the

            model's internal embedding lookup matrix.

        use_cache (`bool`, *optional*):

            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see

            `past_key_values`).

        output_attentions (`bool`, *optional*):

            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned

            tensors for more detail.

        output_hidden_states (`bool`, *optional*):

            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for

            more detail.

        return_dict (`bool`, *optional*):

            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):

            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,

            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer

            the complete sequence length.

"""


@add_start_docstrings("The bare Doge Model outputting raw hidden-states without any specific head on top.")
class DogeModel(DogePreTrainedModel):
    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.rotary_emb = RotaryEmbedding(config)
        self.layers = nn.ModuleList(
            [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.word_embed

    def set_input_embeddings(self, value):
        self.word_embed = value

    @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        cache_position: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You cannot specify both input_ids and inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.word_embed(input_ids)

        # kept for BC (non `Cache` `past_key_values` inputs)
        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):
            return_legacy_cache = True
            if past_key_values is None:
                past_key_values = DynamicCache()
            else:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                logger.warning_once(
                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
                )

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device,
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # causal_mask = self._update_causal_mask(
        #     attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        # )
        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.final_layernorm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    """Move to DogeInnerFuncAttn"""
    # def _update_causal_mask(
    #     self,
    #     attention_mask: torch.Tensor,
    #     input_tensor: torch.Tensor,
    #     cache_position: torch.Tensor,
    #     past_key_values: Cache,
    #     output_attentions: bool,
    # ):
    #     # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
    #     # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
    #     # to infer the attention mask.
    #     past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
    #     using_static_cache = isinstance(past_key_values, StaticCache)

    #     dtype, device = input_tensor.dtype, input_tensor.device
    #     sequence_length = input_tensor.shape[1]
    #     if using_static_cache:
    #         target_length = past_key_values.get_max_cache_shape()
    #     else:
    #         target_length = (
    #             attention_mask.shape[-1]
    #             if isinstance(attention_mask, torch.Tensor)
    #             else past_seen_tokens + sequence_length + 1
    #         )

    #     # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
    #     causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
    #         attention_mask,
    #         sequence_length=sequence_length,
    #         target_length=target_length,
    #         dtype=dtype,
    #         device=device,
    #         cache_position=cache_position,
    #         batch_size=input_tensor.shape[0],
    #     )

    #     return causal_mask

    # @staticmethod
    # def _prepare_4d_causal_attention_mask_with_cache_position(
    #     attention_mask: torch.Tensor,
    #     sequence_length: int,
    #     target_length: int,
    #     dtype: torch.dtype,
    #     device: torch.device,
    #     cache_position: torch.Tensor,
    #     batch_size: int,
    #     **kwargs,
    # ):
    #     """
    #     Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
    #     `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

    #     Args:
    #         attention_mask (`torch.Tensor`):
    #             A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
    #             `(batch_size, 1, query_length, key_value_length)`.
    #         sequence_length (`int`):
    #             The sequence length being processed.
    #         target_length (`int`):
    #             The target length: when generating with static cache, the mask should be as long as the static cache,
    #             to account for the 0 padding, the part of the cache that is not filled yet.
    #         dtype (`torch.dtype`):
    #             The dtype to use for the 4D attention mask.
    #         device (`torch.device`):
    #             The device to plcae the 4D attention mask on.
    #         cache_position (`torch.Tensor`):
    #             Indices depicting the position of the input sequence tokens in the sequence.
    #         batch_size (`torch.Tensor`):
    #             Batch size.
    #     """
    #     if attention_mask is not None and attention_mask.dim() == 4:
    #         # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
    #         causal_mask = attention_mask
    #     else:
    #         min_dtype = torch.finfo(dtype).min
    #         causal_mask = torch.full(
    #             (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
    #         )
    #         if sequence_length != 1:
    #             causal_mask = torch.triu(causal_mask, diagonal=1)
    #         causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
    #         causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
    #         if attention_mask is not None:
    #             causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
    #             mask_length = attention_mask.shape[-1]
    #             padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
    #             padding_mask = padding_mask == 0
    #             causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
    #                 padding_mask, min_dtype
    #             )

    #     return causal_mask


class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.config = config
        self.model = DogeModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.word_embed

    def set_input_embeddings(self, value):
        self.model.word_embed = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        cache_position: Optional[torch.LongTensor] = None,

        num_logits_to_keep: int = 0,

        **loss_kwargs,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



            num_logits_to_keep (`int`, *optional*):

                Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all

                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that

                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.



        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder output consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]

        # only compute necessary logits, and do not upcast them to float if we are not computing the loss
        logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **loss_kwargs)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(

    """

    The Doge Model transformer with a sequence classification head on top (linear layer).



    [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models

    (e.g. GPT-2) do.



    Since it does classification on the last token, it requires to know the position of the last token. If a

    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If

    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the

    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in

    each row of the batch).

    """

)
class DogeForSequenceClassification(DogePreTrainedModel):
    def __init__(self, config: DogeConfig):
        super().__init__(config)
        self.config = config
        self.num_labels = config.num_labels

        self.model = DogeModel(config)
        self.classifier = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.init_weights()

    def get_input_embeddings(self):
        return self.model.word_embed

    def set_input_embeddings(self, value):
        self.model.word_embed = value

    @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
    def forward(

        self,

        input_ids: Optional[torch.LongTensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):

            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,

            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If

            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = outputs[0]
        logits = self.classifier(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            loss = self.loss_function(
                logits=logits,
                labels=labels,
                pooled_logits=pooled_logits,
                config=self.config,
            )

        if not return_dict:
            output = (pooled_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )