latent-consistency/lcm-sdxl compiled on an AWS Inf2 instance. INF2/TRN1 ONLY

How to use

from optimum.neuron import NeuronStableDiffusionXLPipeline

pipe = NeuronStableDiffusionXLPipeline.from_pretrained("Jingya/lcm-sdxl-neuronx")

num_images_per_prompt = 2
prompt = ["a close-up picture of an old man standing in the rain"] * num_images_per_prompt 

images = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=8.0).images

If you are using a later neuron compiler version, you can compile the checkpoint yourself with the following lines via ๐Ÿค— optimum-neuron (the compilation takes approximately an hour):

from optimum.neuron import NeuronStableDiffusionXLPipeline

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
unet_id = "latent-consistency/lcm-sdxl"
num_images_per_prompt = 1
input_shapes = {"batch_size": 1, "height": 1024, "width": 1024, "num_images_per_prompt": num_images_per_prompt}
compiler_args = {"auto_cast": "matmul", "auto_cast_type": "bf16"}

stable_diffusion = NeuronStableDiffusionXLPipeline.from_pretrained(
    model_id, unet_id=unet_id, export=True, **compiler_args, **input_shapes
)
save_directory = "lcm_sdxl_neuron/"
stable_diffusion.save_pretrained(save_directory)

# Push to hub
stable_diffusion.push_to_hub(save_directory, repository_id="Jingya/lcm-sdxl-neuronx", use_auth_token=True)

And feel free to make a pull request and contribute to this repo, thx ๐Ÿค—!

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.