latent-consistency/lcm-sdxl
compiled on an AWS Inf2 instance. INF2/TRN1 ONLY
How to use
from optimum.neuron import NeuronStableDiffusionXLPipeline
pipe = NeuronStableDiffusionXLPipeline.from_pretrained("Jingya/lcm-sdxl-neuronx")
num_images_per_prompt = 2
prompt = ["a close-up picture of an old man standing in the rain"] * num_images_per_prompt
images = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=8.0).images
If you are using a later neuron compiler version, you can compile the checkpoint yourself with the following lines via ๐ค optimum-neuron
(the compilation takes approximately an hour):
from optimum.neuron import NeuronStableDiffusionXLPipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
unet_id = "latent-consistency/lcm-sdxl"
num_images_per_prompt = 1
input_shapes = {"batch_size": 1, "height": 1024, "width": 1024, "num_images_per_prompt": num_images_per_prompt}
compiler_args = {"auto_cast": "matmul", "auto_cast_type": "bf16"}
stable_diffusion = NeuronStableDiffusionXLPipeline.from_pretrained(
model_id, unet_id=unet_id, export=True, **compiler_args, **input_shapes
)
save_directory = "lcm_sdxl_neuron/"
stable_diffusion.save_pretrained(save_directory)
# Push to hub
stable_diffusion.push_to_hub(save_directory, repository_id="Jingya/lcm-sdxl-neuronx", use_auth_token=True)
And feel free to make a pull request and contribute to this repo, thx ๐ค!
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.