Phi-3.5-MultiCap-tool-embedding-past

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.037 0.1524 50 1.1134
1.0204 0.3048 100 1.0044
0.855 0.4571 150 0.9503
0.8786 0.6095 200 0.9030
0.8936 0.7619 250 0.8664
0.8912 0.9143 300 0.8372
0.7467 1.0667 350 0.8161
0.8009 1.2190 400 0.7984
0.7408 1.3714 450 0.7836
0.6925 1.5238 500 0.7728
0.6949 1.6762 550 0.7653
0.7537 1.8286 600 0.7597
0.7729 1.9810 650 0.7571

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Jinapeng/Phi-3.5-MultiCap-tool-embedding-past

Adapter
(136)
this model