File size: 3,928 Bytes
574c97f 8edc10e ea71c24 8edc10e ea71c24 8edc10e 574c97f 298c26a 574c97f 7fb4b37 298c26a 7fb4b37 298c26a bff9db4 016356f 4141523 016356f 298c26a 574c97f 8edc10e 574c97f 7fb4b37 574c97f a6f080d 2ba7b66 a6f080d 7fb4b37 a6f080d 574c97f 7fb4b37 574c97f 7fb4b37 574c97f 7fb4b37 574c97f 8edc10e 7fb4b37 2ba7b66 7fb4b37 2ba7b66 7fb4b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
datasets:
- JetBrains/KExercises
base_model: meta-llama/CodeLlama-7b-hf
results:
- task:
type: text-generation
dataset:
name: MultiPL-HumanEval (Kotlin)
type: openai_humaneval
metrics:
- name: pass@1
type: pass@1
value: 42.24
tags:
- code
---
# Kexer models
Kexer models are a collection of open-source generative text models fine-tuned on the [Kotlin Exercices](https://huggingface.co/datasets/JetBrains/KExercises) dataset.
This is a repository for the fine-tuned **CodeLlama-7b** model in the *Hugging Face Transformers* format.
# How to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load pre-trained model and tokenizer
model_name = 'JetBrains/CodeLlama-7B-Kexer'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')
# Create and encode input
input_text = """\
This function takes an integer n and returns factorial of a number:
fun factorial(n: Int): Int {\
"""
input_ids = tokenizer.encode(
input_text, return_tensors='pt'
).to('cuda')
# Generate
output = model.generate(
input_ids, max_length=60, num_return_sequences=1,
early_stopping=True, pad_token_id=tokenizer.eos_token_id,
)
# Decode output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
As with the base model, we can use FIM. To do this, the following format must be used:
```
'<PRE> ' + prefix + ' <SUF> ' + suffix + ' <MID>'
```
# Training setup
The model was trained on one A100 GPU with the following hyperparameters:
| **Hyperparameter** | **Value** |
|:---------------------------:|:----------------------------------------:|
| `warmup` | 10% |
| `max_lr` | 1e-4 |
| `scheduler` | linear |
| `total_batch_size` | 256 (~130K tokens per step) |
| `num_epochs` | 4 |
More details about fine-tuning can be found in the technical report.
# Fine-tuning data
For tuning this model, we used 15K exmaples from the synthetically generated [Kotlin Exercices dataset](https://huggingface.co/datasets/JetBrains/KExercises). Every example follows the HumanEval format. In total, the dataset contains about 3.5M tokens.
# Evaluation
For evaluation, we used the [Kotlin HumanEval](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval) dataset, which contains all 161 tasks from HumanEval translated into Kotlin by human experts. You can find more details about the pre-processing necessary to obtain our results, including the code for running, on the [datasets's page](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval).
Here are the results of our evaluation:
| **Model name** | **Kotlin HumanEval Pass Rate** |
|:---------------------------:|:----------------------------------------:|
| `CodeLlama-7B` | 26.89 |
| `CodeLlama-7B-Kexer` | **42.24** |
# Ethical considerations and limitations
CodeLlama-7B-Kexer is a new technology that carries risks with use. The testing conducted to date has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, CodeLlama-7B-Kexer's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. The model was fine-tuned on a specific data format (Kotlin tasks), and deviation from this format can also lead to inaccurate or undesirable responses to user queries. Therefore, before deploying any applications of CodeLlama-7B-Kexer, developers should perform safety testing and tuning tailored to their specific applications of the model. |