zephyr-7b-dpo-lora / README.md
Jerry46's picture
Model save
32bae28
metadata
license: mit
base_model: HuggingFaceH4/zephyr-7b-beta
tags:
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-lora
    results: []

zephyr-7b-dpo-lora

This model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.6931
  • eval_runtime: 817.0722
  • eval_samples_per_second: 2.448
  • eval_steps_per_second: 0.153
  • eval_rewards/chosen: 0.0
  • eval_rewards/rejected: 0.0
  • eval_rewards/accuracies: 0.0
  • eval_rewards/margins: 0.0
  • eval_logps/rejected: -311.3714
  • eval_logps/chosen: -319.0738
  • eval_logits/rejected: -2.3541
  • eval_logits/chosen: -2.4051
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 0

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1