File size: 3,139 Bytes
12cca13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
language: en
datasets:
- conll2003
widget:
- text: "My name is jean-baptiste and I live in montreal"
- text: "My name is clara and I live in berkeley, california."
- text: "My name is wolfgang and I live in berlin"
---
# roberta-large-ner: model fine-tuned from roberta-large for NER task
## Introduction
[roberta-large-ner] is a NER model that was fine-tuned from roberta-large on conll2003 dataset.
Model was validated on emails/chat data and outperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
## Training data
Training data was classified as follow:
Abbreviation|Description
-|-
O| Outside of a named entity
MISC | Miscellaneous entity
PER | Person’s name
ORG | Organization
LOC | Location
In order to simplify, the prefix B- or I- from original conll2003 was removed.
I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size:
Train | 17494
Validation | 3250
## How to use camembert-ner with HuggingFace
##### Load camembert-ner and its sub-word tokenizer :
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner")
##### Process text sample (from wikipedia)
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer")
[{'entity_group': 'ORG',
'score': 0.99381506,
'word': ' Apple',
'start': 0,
'end': 5},
{'entity_group': 'PER',
'score': 0.99970853,
'word': ' Steve Jobs',
'start': 29,
'end': 39},
{'entity_group': 'PER',
'score': 0.99981767,
'word': ' Steve Wozniak',
'start': 41,
'end': 54},
{'entity_group': 'PER',
'score': 0.99956465,
'word': ' Ronald Wayne',
'start': 59,
'end': 71},
{'entity_group': 'PER',
'score': 0.9997918,
'word': ' Wozniak',
'start': 92,
'end': 99},
{'entity_group': 'MISC',
'score': 0.99956393,
'word': ' Apple I',
'start': 102,
'end': 109}]
```
## Model performances
Model performances computed on conll2003 validation dataset (computed on the tokens predictions)
```
entity | precision | recall | f1
- | - | - | -
PER | 0.9914 | 0.9927 | 0.9920
ORG | 0.9627 | 0.9661 | 0.9644
LOC | 0.9795 | 0.9862 | 0.9828
MISC | 0.9292 | 0.9262 | 0.9277
Overall | 0.9740 | 0.9766 | 0.9753
```
On private dataset (email, chat, informal discussion), computed on word predictions:
```
entity | precision | recall | f1
- | - | - | -
PER | 0.8823 | 0.9116 | 0.8967
ORG | 0.7694 | 0.7292 | 0.7487
LOC | 0.8619 | 0.7768 | 0.8171
```
Spacy (en_core_web_trf-3.2.0) on the same private dataset was giving:
```
entity | precision | recall | f1
- | - | - | -
PER | 0.9146 | 0.8287 | 0.8695
ORG | 0.7655 | 0.6437 | 0.6993
LOC | 0.8727 | 0.6180 | 0.7236
```
|