Model discription
Hindi Summarization model. It summarizes a hindi paragraph.
Base model
- mt5-small
How to use
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
checkpoint = "Jayveersinh-Raj/hindi-summarizer-small"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# Input paragraph for summarization
input_sentence = "<sum> your hindi paragraph"
# Tokenize the input sentence
input_ids = tokenizer.encode(input_sentence, return_tensors="pt").to("cuda")
# Generate predictions
with torch.no_grad():
output_ids = model.generate(input_ids, max_new_tokens=200)
# Decode the generated output
output_sentence = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Print the generated output
print("Input:", input_sentence)
print("Summarized:", output_sentence)
Evaluation
- Rogue1: 0.38
- BLUE: 0.35
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.