F_Roberta_classifier2

This model is a fine-tuned version of distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1317

  • Accuracy: 0.9751

  • F1: 0.9751

  • Precision: 0.9751

  • Recall: 0.9751

  • C Report: precision recall f1-score support

         0       0.97      0.98      0.98      1467
         1       0.98      0.97      0.98      1466
    

    accuracy 0.98 2933 macro avg 0.98 0.98 0.98 2933

weighted avg 0.98 0.98 0.98 2933

  • C Matrix: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall C Report C Matrix
0.1626 1.0 614 0.0936 0.9707 0.9707 0.9707 0.9707 precision recall f1-score support
       0       0.97      0.97      0.97      1467
       1       0.97      0.97      0.97      1466

accuracy                           0.97      2933

macro avg 0.97 0.97 0.97 2933 weighted avg 0.97 0.97 0.97 2933 | None | | 0.0827 | 2.0 | 1228 | 0.0794 | 0.9731 | 0.9731 | 0.9731 | 0.9731 | precision recall f1-score support

       0       0.96      0.98      0.97      1467
       1       0.98      0.96      0.97      1466

accuracy                           0.97      2933

macro avg 0.97 0.97 0.97 2933 weighted avg 0.97 0.97 0.97 2933 | None | | 0.0525 | 3.0 | 1842 | 0.1003 | 0.9737 | 0.9737 | 0.9737 | 0.9737 | precision recall f1-score support

       0       0.97      0.98      0.97      1467
       1       0.98      0.97      0.97      1466

accuracy                           0.97      2933

macro avg 0.97 0.97 0.97 2933 weighted avg 0.97 0.97 0.97 2933 | None | | 0.0329 | 4.0 | 2456 | 0.1184 | 0.9751 | 0.9751 | 0.9751 | 0.9751 | precision recall f1-score support

       0       0.98      0.97      0.98      1467
       1       0.97      0.98      0.98      1466

accuracy                           0.98      2933

macro avg 0.98 0.98 0.98 2933 weighted avg 0.98 0.98 0.98 2933 | None | | 0.0179 | 5.0 | 3070 | 0.1317 | 0.9751 | 0.9751 | 0.9751 | 0.9751 | precision recall f1-score support

       0       0.97      0.98      0.98      1467
       1       0.98      0.97      0.98      1466

accuracy                           0.98      2933

macro avg 0.98 0.98 0.98 2933 weighted avg 0.98 0.98 0.98 2933 | None |

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.