File size: 3,401 Bytes
aa8f6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22dfafa
 
 
 
 
 
 
 
 
 
aa8f6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88d405
c3dac84
aa8f6da
 
 
16b11dd
aa8f6da
 
 
22dfafa
 
 
 
aa8f6da
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv3-base-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-base-ner

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1562
- Footer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Able: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}
- Aption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
- Ext: {'precision': 0.06153846153846154, 'recall': 0.4, 'f1': 0.10666666666666667, 'number': 10}
- Overall Precision: 0.0310
- Overall Recall: 0.1739
- Overall F1: 0.0526
- Overall Accuracy: 0.8882

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Footer                                                    | Header                                                    | Able                                                      | Aption                                                    | Ext                                                                                        | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 2.0796        | 1.0   | 5    | 1.4462          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.05063291139240506, 'recall': 0.4, 'f1': 0.0898876404494382, 'number': 10}  | 0.0255            | 0.1739         | 0.0444     | 0.8518           |
| 1.2478        | 2.0   | 10   | 1.1562          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.06153846153846154, 'recall': 0.4, 'f1': 0.10666666666666667, 'number': 10} | 0.0310            | 0.1739         | 0.0526     | 0.8882           |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.13.2