Jacques2207 commited on
Commit
c3dac84
1 Parent(s): 82a0567

End of training

Browse files
README.md CHANGED
@@ -14,19 +14,20 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 1.4071
18
- - Footer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186}
19
- - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373}
20
- - Able: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100}
21
- - Aption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148}
22
- - Ext: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566}
23
- - Icture: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270}
24
- - Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45}
25
- - Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
26
- - Overall Precision: 0.0
27
- - Overall Recall: 0.0
28
- - Overall F1: 0.0
29
- - Overall Accuracy: 0.6399
 
30
 
31
  ## Model description
32
 
@@ -47,7 +48,7 @@ More information needed
47
  The following hyperparameters were used during training:
48
  - learning_rate: 3e-05
49
  - train_batch_size: 2
50
- - eval_batch_size: 4
51
  - seed: 42
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
@@ -55,13 +56,13 @@ The following hyperparameters were used during training:
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Footer | Header | Able | Aption | Ext | Icture | Itle | Ootnote | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
- |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
- | 1.1724 | 1.0 | 1950 | 1.4537 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 |
61
- | 1.2004 | 2.0 | 3900 | 1.4094 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 |
62
- | 1.2026 | 3.0 | 5850 | 1.4038 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 |
63
- | 1.2107 | 4.0 | 7800 | 1.4217 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 |
64
- | 1.1836 | 5.0 | 9750 | 1.4071 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0 | 0.0 | 0.0 | 0.6399 |
65
 
66
 
67
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 1.5413
18
+ - Footer: {'precision': 0.9381835473133618, 'recall': 0.8653508771929824, 'f1': 0.9002966005019393, 'number': 2280}
19
+ - Header: {'precision': 0.6690058479532164, 'recall': 0.601472134595163, 'f1': 0.6334440753045404, 'number': 951}
20
+ - Able: {'precision': 0.19949254678084363, 'recall': 0.5143090760425184, 'f1': 0.2874771480804387, 'number': 1223}
21
+ - Aption: {'precision': 0.32124352331606215, 'recall': 0.07515151515151515, 'f1': 0.12180746561886051, 'number': 825}
22
+ - Ext: {'precision': 0.34080531340805315, 'recall': 0.4647608264930654, 'f1': 0.39324631780625074, 'number': 3533}
23
+ - Icture: {'precision': 0.0546448087431694, 'recall': 0.13157894736842105, 'f1': 0.0772200772200772, 'number': 608}
24
+ - Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
25
+ - Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145}
26
+ - Ormula: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 360}
27
+ - Overall Precision: 0.3939
28
+ - Overall Recall: 0.4936
29
+ - Overall F1: 0.4382
30
+ - Overall Accuracy: 0.7180
31
 
32
  ## Model description
33
 
 
48
  The following hyperparameters were used during training:
49
  - learning_rate: 3e-05
50
  - train_batch_size: 2
51
+ - eval_batch_size: 2
52
  - seed: 42
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
 
56
 
57
  ### Training results
58
 
59
+ | Training Loss | Epoch | Step | Validation Loss | Footer | Header | Able | Aption | Ext | Icture | Itle | Ootnote | Ormula | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
61
+ | 0.4772 | 1.0 | 500 | 1.3891 | {'precision': 0.8112648221343873, 'recall': 0.7201754385964912, 'f1': 0.763011152416357, 'number': 2280} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 951} | {'precision': 0.13366666666666666, 'recall': 0.32788225674570726, 'f1': 0.1899123845607388, 'number': 1223} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 825} | {'precision': 0.2245841035120148, 'recall': 0.27512029436739316, 'f1': 0.24729678157995166, 'number': 3533} | {'precision': 0.022222222222222223, 'recall': 0.008223684210526315, 'f1': 0.012004801920768306, 'number': 608} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 360} | 0.3131 | 0.3007 | 0.3068 | 0.7042 |
62
+ | 0.2598 | 2.0 | 1000 | 1.3046 | {'precision': 0.672650475184794, 'recall': 0.8381578947368421, 'f1': 0.7463386057410663, 'number': 2280} | {'precision': 0.28655597214783074, 'recall': 0.562565720294427, 'f1': 0.3797019162526614, 'number': 951} | {'precision': 0.12042429284525791, 'recall': 0.473426001635323, 'f1': 0.19200795887912453, 'number': 1223} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 825} | {'precision': 0.22616279069767442, 'recall': 0.4404189074440985, 'f1': 0.29885719773360225, 'number': 3533} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 608} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 360} | 0.2682 | 0.4561 | 0.3378 | 0.6730 |
63
+ | 0.1936 | 3.0 | 1500 | 1.4208 | {'precision': 0.9038104089219331, 'recall': 0.8530701754385965, 'f1': 0.8777075812274369, 'number': 2280} | {'precision': 0.6213468869123253, 'recall': 0.5141955835962145, 'f1': 0.5627157652474108, 'number': 951} | {'precision': 0.16486261448792672, 'recall': 0.4856909239574816, 'f1': 0.2461665975963531, 'number': 1223} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 825} | {'precision': 0.2463847702727439, 'recall': 0.3809793376733654, 'f1': 0.2992441084926634, 'number': 3533} | {'precision': 0.02721774193548387, 'recall': 0.044407894736842105, 'f1': 0.03375, 'number': 608} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 360} | 0.3385 | 0.4382 | 0.3819 | 0.7043 |
64
+ | 0.1392 | 4.0 | 2000 | 1.7208 | {'precision': 0.9363636363636364, 'recall': 0.8583333333333333, 'f1': 0.8956521739130435, 'number': 2280} | {'precision': 0.6706521739130434, 'recall': 0.6487907465825447, 'f1': 0.6595403527525386, 'number': 951} | {'precision': 0.15699904122722916, 'recall': 0.53556827473426, 'f1': 0.24281742354031513, 'number': 1223} | {'precision': 0.18992248062015504, 'recall': 0.059393939393939395, 'f1': 0.0904893813481071, 'number': 825} | {'precision': 0.2668534407284188, 'recall': 0.43136144919332015, 'f1': 0.3297273907399394, 'number': 3533} | {'precision': 0.046700507614213196, 'recall': 0.0756578947368421, 'f1': 0.05775266792215945, 'number': 608} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 360} | 0.3430 | 0.4827 | 0.4010 | 0.6703 |
65
+ | 0.0899 | 5.0 | 2500 | 1.5413 | {'precision': 0.9381835473133618, 'recall': 0.8653508771929824, 'f1': 0.9002966005019393, 'number': 2280} | {'precision': 0.6690058479532164, 'recall': 0.601472134595163, 'f1': 0.6334440753045404, 'number': 951} | {'precision': 0.19949254678084363, 'recall': 0.5143090760425184, 'f1': 0.2874771480804387, 'number': 1223} | {'precision': 0.32124352331606215, 'recall': 0.07515151515151515, 'f1': 0.12180746561886051, 'number': 825} | {'precision': 0.34080531340805315, 'recall': 0.4647608264930654, 'f1': 0.39324631780625074, 'number': 3533} | {'precision': 0.0546448087431694, 'recall': 0.13157894736842105, 'f1': 0.0772200772200772, 'number': 608} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 360} | 0.3939 | 0.4936 | 0.4382 | 0.7180 |
66
 
67
 
68
  ### Framework versions
logs/events.out.tfevents.1679330367.138-2-233-57.342634.6 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e760dbdd0a19e1c020360a54ac6ac4f907ff2712741244854cdecf22a282e47e
3
- size 7919
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1686af6ac80511f569ba3626f01eae903c5baa94917bda0eab29a117e004deeb
3
+ size 8273
preprocessor_config.json CHANGED
@@ -1,24 +1,11 @@
1
  {
2
  "apply_ocr": false,
3
- "do_normalize": true,
4
- "do_rescale": true,
5
  "do_resize": true,
6
- "feature_extractor_type": "LayoutLMv3FeatureExtractor",
7
- "image_mean": [
8
- 0.5,
9
- 0.5,
10
- 0.5
11
- ],
12
- "image_processor_type": "LayoutLMv3ImageProcessor",
13
- "image_std": [
14
- 0.5,
15
- 0.5,
16
- 0.5
17
- ],
18
  "ocr_lang": null,
19
- "processor_class": "LayoutLMv3Processor",
20
  "resample": 2,
21
- "rescale_factor": 0.00392156862745098,
22
  "size": {
23
  "height": 224,
24
  "width": 224
 
1
  {
2
  "apply_ocr": false,
 
 
3
  "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
 
 
 
 
 
 
 
 
 
 
6
  "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
  "resample": 2,
 
9
  "size": {
10
  "height": 224,
11
  "width": 224
special_tokens_map.json CHANGED
@@ -1,51 +1,7 @@
1
  {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": true,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": true,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": true,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": true,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": true,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": true,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
  }
 
1
  {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,56 +1,21 @@
1
  {
2
- "add_prefix_space": true,
3
  "apply_ocr": false,
4
- "bos_token": {
5
- "__type": "AddedToken",
6
- "content": "<s>",
7
- "lstrip": false,
8
- "normalized": true,
9
- "rstrip": false,
10
- "single_word": false
11
- },
12
- "cls_token": {
13
- "__type": "AddedToken",
14
- "content": "<s>",
15
- "lstrip": false,
16
- "normalized": true,
17
- "rstrip": false,
18
- "single_word": false
19
- },
20
  "cls_token_box": [
21
  0,
22
  0,
23
  0,
24
  0
25
  ],
26
- "eos_token": {
27
- "__type": "AddedToken",
28
- "content": "</s>",
29
- "lstrip": false,
30
- "normalized": true,
31
- "rstrip": false,
32
- "single_word": false
33
- },
34
- "errors": "replace",
35
- "mask_token": {
36
- "__type": "AddedToken",
37
- "content": "<mask>",
38
- "lstrip": true,
39
- "normalized": true,
40
- "rstrip": false,
41
- "single_word": false
42
- },
43
  "model_max_length": 512,
44
- "name_or_path": "microsoft/layoutlmv3-base",
 
45
  "only_label_first_subword": true,
46
- "pad_token": {
47
- "__type": "AddedToken",
48
- "content": "<pad>",
49
- "lstrip": false,
50
- "normalized": true,
51
- "rstrip": false,
52
- "single_word": false
53
- },
54
  "pad_token_box": [
55
  0,
56
  0,
@@ -58,30 +23,17 @@
58
  0
59
  ],
60
  "pad_token_label": -100,
61
- "processor_class": "LayoutLMv3Processor",
62
- "sep_token": {
63
- "__type": "AddedToken",
64
- "content": "</s>",
65
- "lstrip": false,
66
- "normalized": true,
67
- "rstrip": false,
68
- "single_word": false
69
- },
70
  "sep_token_box": [
71
- 0,
72
- 0,
73
- 0,
74
- 0
75
  ],
76
  "special_tokens_map_file": null,
77
- "tokenizer_class": "LayoutLMv3Tokenizer",
78
- "trim_offsets": true,
79
- "unk_token": {
80
- "__type": "AddedToken",
81
- "content": "<unk>",
82
- "lstrip": false,
83
- "normalized": true,
84
- "rstrip": false,
85
- "single_word": false
86
- }
87
  }
 
1
  {
2
+ "additional_special_tokens": null,
3
  "apply_ocr": false,
4
+ "cls_token": "[CLS]",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "cls_token_box": [
6
  0,
7
  0,
8
  0,
9
  0
10
  ],
11
+ "do_basic_tokenize": true,
12
+ "do_lower_case": true,
13
+ "mask_token": "[MASK]",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  "model_max_length": 512,
15
+ "name_or_path": "pmorelr/layoutlm-doclaynet-test",
16
+ "never_split": null,
17
  "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
 
 
 
 
 
 
 
19
  "pad_token_box": [
20
  0,
21
  0,
 
23
  0
24
  ],
25
  "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
 
 
 
 
 
 
 
28
  "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
  ],
34
  "special_tokens_map_file": null,
35
+ "strip_accents": null,
36
+ "tokenize_chinese_chars": true,
37
+ "tokenizer_class": "LayoutLMv2Tokenizer",
38
+ "unk_token": "[UNK]"
 
 
 
 
 
 
39
  }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff