Edit model card
Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

wft-test-model

This model is a fine-tuned version of openai/whisper-tiny on the hf-internal-testing/librispeech_asr_dummy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1185
  • Wer: 5.9055
  • Cer: 83.2386
  • Decode Time: 0.5299
  • Wer Time: 0.0047
  • Cer Time: 0.0030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Time Wer Time Cer Time
2.4079 0.1 10 1.9885 312.2047 119.2472 0.5334 0.0169 0.0041
1.2303 1.01 20 1.1646 258.2677 100.0 0.5213 1.4057 0.0046
0.8667 1.11 30 0.8100 37.7953 52.3438 0.5008 0.0396 0.0045
0.4517 2.02 40 0.6337 40.9449 73.7926 0.5137 0.0217 0.0030
0.4352 2.12 50 0.4493 16.5354 88.1392 0.5203 0.0054 0.0032
0.2341 3.03 60 0.2922 8.2677 97.5852 0.5434 0.0060 0.0032
0.2233 3.13 70 0.2026 9.0551 83.5227 0.5359 0.0063 0.0033
0.1098 4.04 80 0.1665 5.9055 83.9489 0.5316 0.0056 0.0029
0.0678 4.14 90 0.1279 7.0866 81.1080 0.5388 0.0079 0.0038
0.078 5.05 100 0.1185 5.9055 83.2386 0.5299 0.0047 0.0030

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
7
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for JacobLinCool/wft-test-model

Adapter
(56)
this model

Dataset used to train JacobLinCool/wft-test-model

Evaluation results

  • Wer on hf-internal-testing/librispeech_asr_dummy
    self-reported
    5.906