Model Card for [Your VITS Model Name]

Model Details

  • Model Name: [Your VITS Model Name]
  • Model Type: TTS (Text-to-Speech)
  • Architecture: VITS (Variational Inference Text-to-Speech)
  • Author: [Your Name or Organization]
  • Repository: [Link to your Huggingface repository]
  • Paper: [Link to the original VITS paper, if applicable]

Model Description

VITS (Variational Inference Text-to-Speech) 是一種新穎的 TTS 模型架構,能夠生成高質量且自然的語音。本模型基於 VITS 架構,旨在提供高效的語音合成功能,適用於多種應用場景。

Usage

Inference

要使用此模型進行語音合成,您可以使用以下代碼示例:

from transformers import Wav2Vec2Processor, VITSModel

processor = Wav2Vec2Processor.from_pretrained("[Your Huggingface Model Repository]")
model = VITSModel.from_pretrained("[Your Huggingface Model Repository]")

inputs = processor("要合成的文本", return_tensors="pt")

with torch.no_grad():
    speech = model.generate_speech(inputs.input_values)

# Save or play the generated speech
with open("output.wav", "wb") as f:
    f.write(speech)

Training

如果您需要訓練此模型,請參考以下的代碼示例:

from transformers import VITSConfig, VITSForSpeechSynthesis, Trainer, TrainingArguments

config = VITSConfig()
model = VITSForSpeechSynthesis(config)

training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=your_train_dataset,
    eval_dataset=your_eval_dataset,
)

trainer.train()

Model Performance

  • Training Dataset: 描述用於訓練模型的數據集。
  • Evaluation Metrics: 描述模型性能評估所使用的指標,如 MOS (Mean Opinion Score) 或 PESQ (Perceptual Evaluation of Speech Quality)。
  • Results: 提供模型在測試數據集上的性能數據。

Limitations and Bias

  • Known Limitations: 描述模型的已知限制,如對某些語言或口音的支持較差。
  • Potential Bias: 描述模型可能存在的偏見和倫理問題。

Citation

如果您在研究中使用了此模型,請引用以下文獻:

@inproceedings{vits2021,
  title={Variational Inference Text-to-Speech},
  author={Your Name and Co-Authors},
  booktitle={Conference on Your Conference Name},
  year={2021}
}

Acknowledgements

感謝 [Your Team or Collaborators] 對此模型開發的支持和貢獻。


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.