File size: 5,460 Bytes
5cfc72d
 
 
 
 
 
121233c
 
5cfc72d
70a3e24
121233c
 
 
 
 
 
 
 
 
 
 
 
 
5bbb75f
5cfc72d
 
 
 
 
70a3e24
5cfc72d
adcc6fe
5cfc72d
5bbb75f
 
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff5a62
5cfc72d
121233c
 
 
 
81119c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121233c
 
5cfc72d
 
7452863
81119c3
7452863
12e944a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9714285714285714
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# delivery_truck_classification

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1192
- Accuracy: 0.9714

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 5    | 1.9402          | 0.1286   |
| No log        | 2.0   | 10   | 1.8379          | 0.2429   |
| No log        | 3.0   | 15   | 1.6960          | 0.4      |
| 1.7795        | 4.0   | 20   | 1.4423          | 0.5143   |
| 1.7795        | 5.0   | 25   | 1.1295          | 0.6857   |
| 1.7795        | 6.0   | 30   | 0.8280          | 0.7286   |
| 1.7795        | 7.0   | 35   | 0.5572          | 0.8429   |
| 1.0588        | 8.0   | 40   | 0.3855          | 0.9286   |
| 1.0588        | 9.0   | 45   | 0.3107          | 0.9143   |
| 1.0588        | 10.0  | 50   | 0.2564          | 0.9286   |
| 1.0588        | 11.0  | 55   | 0.2050          | 0.9286   |
| 0.591         | 12.0  | 60   | 0.1900          | 0.9571   |
| 0.591         | 13.0  | 65   | 0.1720          | 0.9286   |
| 0.591         | 14.0  | 70   | 0.1881          | 0.9143   |
| 0.591         | 15.0  | 75   | 0.1789          | 0.9429   |
| 0.4609        | 16.0  | 80   | 0.1999          | 0.9143   |
| 0.4609        | 17.0  | 85   | 0.1492          | 0.9286   |
| 0.4609        | 18.0  | 90   | 0.1648          | 0.9286   |
| 0.4609        | 19.0  | 95   | 0.1195          | 0.9571   |
| 0.3941        | 20.0  | 100  | 0.1395          | 0.9286   |
| 0.3941        | 21.0  | 105  | 0.1476          | 0.9286   |
| 0.3941        | 22.0  | 110  | 0.1113          | 0.9571   |
| 0.3941        | 23.0  | 115  | 0.1328          | 0.9571   |
| 0.3475        | 24.0  | 120  | 0.1192          | 0.9714   |
| 0.3475        | 25.0  | 125  | 0.1200          | 0.9571   |
| 0.3475        | 26.0  | 130  | 0.1360          | 0.9714   |
| 0.3475        | 27.0  | 135  | 0.1425          | 0.9429   |
| 0.3542        | 28.0  | 140  | 0.1103          | 0.9571   |
| 0.3542        | 29.0  | 145  | 0.1244          | 0.9429   |
| 0.3542        | 30.0  | 150  | 0.1176          | 0.9571   |
| 0.3542        | 31.0  | 155  | 0.1028          | 0.9571   |
| 0.317         | 32.0  | 160  | 0.1084          | 0.9571   |
| 0.317         | 33.0  | 165  | 0.1269          | 0.9571   |
| 0.317         | 34.0  | 170  | 0.1295          | 0.9429   |
| 0.317         | 35.0  | 175  | 0.1245          | 0.9571   |
| 0.2947        | 36.0  | 180  | 0.1315          | 0.9429   |
| 0.2947        | 37.0  | 185  | 0.1313          | 0.9571   |
| 0.2947        | 38.0  | 190  | 0.1421          | 0.9429   |
| 0.2947        | 39.0  | 195  | 0.1440          | 0.9571   |
| 0.3124        | 40.0  | 200  | 0.1339          | 0.9571   |
| 0.3124        | 41.0  | 205  | 0.1553          | 0.9429   |
| 0.3124        | 42.0  | 210  | 0.1547          | 0.9429   |
| 0.3124        | 43.0  | 215  | 0.1316          | 0.9571   |
| 0.2843        | 44.0  | 220  | 0.1287          | 0.9571   |
| 0.2843        | 45.0  | 225  | 0.1308          | 0.9571   |
| 0.2843        | 46.0  | 230  | 0.1401          | 0.9571   |
| 0.2843        | 47.0  | 235  | 0.1186          | 0.9571   |
| 0.2655        | 48.0  | 240  | 0.1057          | 0.9571   |
| 0.2655        | 49.0  | 245  | 0.1203          | 0.9571   |
| 0.2655        | 50.0  | 250  | 0.1374          | 0.9571   |
| 0.2655        | 51.0  | 255  | 0.1361          | 0.9571   |
| 0.26          | 52.0  | 260  | 0.1198          | 0.9571   |
| 0.26          | 53.0  | 265  | 0.1175          | 0.9571   |
| 0.26          | 54.0  | 270  | 0.1313          | 0.9571   |
| 0.26          | 55.0  | 275  | 0.1398          | 0.9429   |
| 0.2601        | 56.0  | 280  | 0.1354          | 0.9571   |
| 0.2601        | 57.0  | 285  | 0.1271          | 0.9571   |
| 0.2601        | 58.0  | 290  | 0.1242          | 0.9571   |
| 0.2601        | 59.0  | 295  | 0.1233          | 0.9571   |
| 0.2562        | 60.0  | 300  | 0.1235          | 0.9571   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2