File size: 4,220 Bytes
5cfc72d
 
 
 
 
 
 
 
 
70a3e24
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
0161b92
5cfc72d
 
 
 
 
70a3e24
5cfc72d
adcc6fe
5cfc72d
0161b92
 
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
096f619
5cfc72d
 
 
 
 
4e6aa37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cfc72d
 
 
 
12e944a
02855a3
4e6aa37
12e944a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9814814814814815
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# delivery_truck_classification

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1169
- Accuracy: 0.9815

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.8   | 3    | 1.7556          | 0.2037   |
| No log        | 1.8   | 6    | 1.5833          | 0.3704   |
| No log        | 2.8   | 9    | 1.3483          | 0.5926   |
| No log        | 3.8   | 12   | 1.1101          | 0.6667   |
| No log        | 4.8   | 15   | 0.9116          | 0.7222   |
| No log        | 5.8   | 18   | 0.7632          | 0.7407   |
| 1.7322        | 6.8   | 21   | 0.6118          | 0.7963   |
| 1.7322        | 7.8   | 24   | 0.5017          | 0.8519   |
| 1.7322        | 8.8   | 27   | 0.4241          | 0.8889   |
| 1.7322        | 9.8   | 30   | 0.3522          | 0.8704   |
| 1.7322        | 10.8  | 33   | 0.2918          | 0.9259   |
| 1.7322        | 11.8  | 36   | 0.2659          | 0.9259   |
| 1.7322        | 12.8  | 39   | 0.2587          | 0.9444   |
| 0.7462        | 13.8  | 42   | 0.2063          | 0.9259   |
| 0.7462        | 14.8  | 45   | 0.1870          | 0.9259   |
| 0.7462        | 15.8  | 48   | 0.1739          | 0.9630   |
| 0.7462        | 16.8  | 51   | 0.2043          | 0.9259   |
| 0.7462        | 17.8  | 54   | 0.1897          | 0.9259   |
| 0.7462        | 18.8  | 57   | 0.1764          | 0.9444   |
| 0.4232        | 19.8  | 60   | 0.1587          | 0.9444   |
| 0.4232        | 20.8  | 63   | 0.1556          | 0.9630   |
| 0.4232        | 21.8  | 66   | 0.1516          | 0.9630   |
| 0.4232        | 22.8  | 69   | 0.1264          | 0.9630   |
| 0.4232        | 23.8  | 72   | 0.1180          | 0.9630   |
| 0.4232        | 24.8  | 75   | 0.1110          | 0.9630   |
| 0.4232        | 25.8  | 78   | 0.1232          | 0.9630   |
| 0.3571        | 26.8  | 81   | 0.1169          | 0.9815   |
| 0.3571        | 27.8  | 84   | 0.1051          | 0.9815   |
| 0.3571        | 28.8  | 87   | 0.0986          | 0.9630   |
| 0.3571        | 29.8  | 90   | 0.0937          | 0.9630   |
| 0.3571        | 30.8  | 93   | 0.0931          | 0.9630   |
| 0.3571        | 31.8  | 96   | 0.0932          | 0.9630   |
| 0.3571        | 32.8  | 99   | 0.0941          | 0.9630   |
| 0.3239        | 33.8  | 102  | 0.0920          | 0.9630   |
| 0.3239        | 34.8  | 105  | 0.0851          | 0.9630   |
| 0.3239        | 35.8  | 108  | 0.0828          | 0.9630   |
| 0.3239        | 36.8  | 111  | 0.0810          | 0.9630   |
| 0.3239        | 37.8  | 114  | 0.0801          | 0.9630   |
| 0.3239        | 38.8  | 117  | 0.0804          | 0.9630   |
| 0.3111        | 39.8  | 120  | 0.0807          | 0.9630   |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2