File size: 4,226 Bytes
5cfc72d
 
 
 
 
 
 
 
 
70a3e24
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
a6d015b
5cfc72d
 
 
 
 
70a3e24
5cfc72d
fa20d62
5cfc72d
a6d015b
 
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
096f619
5cfc72d
 
 
 
 
02855a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cfc72d
 
 
 
02855a3
 
 
5cfc72d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9767441860465116
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# delivery_truck_classification

This model is a fine-tuned version of [JEdward7777/delivery_truck_classification](https://huggingface.co/JEdward7777/delivery_truck_classification) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1403
- Accuracy: 0.9767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 3    | 0.1491          | 0.9535   |
| No log        | 2.0   | 6    | 0.1462          | 0.9535   |
| No log        | 3.0   | 9    | 0.1403          | 0.9767   |
| No log        | 4.0   | 12   | 0.1431          | 0.9767   |
| No log        | 5.0   | 15   | 0.1761          | 0.9535   |
| No log        | 6.0   | 18   | 0.1930          | 0.9535   |
| 0.2637        | 7.0   | 21   | 0.1677          | 0.9535   |
| 0.2637        | 8.0   | 24   | 0.1835          | 0.9767   |
| 0.2637        | 9.0   | 27   | 0.1804          | 0.9535   |
| 0.2637        | 10.0  | 30   | 0.1856          | 0.9535   |
| 0.2637        | 11.0  | 33   | 0.1719          | 0.9535   |
| 0.2637        | 12.0  | 36   | 0.1680          | 0.9535   |
| 0.2637        | 13.0  | 39   | 0.1571          | 0.9535   |
| 0.1687        | 14.0  | 42   | 0.1333          | 0.9535   |
| 0.1687        | 15.0  | 45   | 0.1285          | 0.9535   |
| 0.1687        | 16.0  | 48   | 0.1293          | 0.9535   |
| 0.1687        | 17.0  | 51   | 0.1208          | 0.9767   |
| 0.1687        | 18.0  | 54   | 0.1061          | 0.9767   |
| 0.1687        | 19.0  | 57   | 0.0978          | 0.9767   |
| 0.1435        | 20.0  | 60   | 0.1100          | 0.9535   |
| 0.1435        | 21.0  | 63   | 0.1205          | 0.9535   |
| 0.1435        | 22.0  | 66   | 0.1027          | 0.9767   |
| 0.1435        | 23.0  | 69   | 0.1041          | 0.9767   |
| 0.1435        | 24.0  | 72   | 0.1021          | 0.9767   |
| 0.1435        | 25.0  | 75   | 0.0974          | 0.9767   |
| 0.1435        | 26.0  | 78   | 0.1006          | 0.9535   |
| 0.1361        | 27.0  | 81   | 0.1011          | 0.9535   |
| 0.1361        | 28.0  | 84   | 0.0993          | 0.9767   |
| 0.1361        | 29.0  | 87   | 0.0951          | 0.9767   |
| 0.1361        | 30.0  | 90   | 0.0971          | 0.9767   |
| 0.1361        | 31.0  | 93   | 0.1036          | 0.9767   |
| 0.1361        | 32.0  | 96   | 0.1085          | 0.9767   |
| 0.1361        | 33.0  | 99   | 0.1099          | 0.9767   |
| 0.1221        | 34.0  | 102  | 0.1115          | 0.9767   |
| 0.1221        | 35.0  | 105  | 0.1133          | 0.9767   |
| 0.1221        | 36.0  | 108  | 0.1184          | 0.9535   |
| 0.1221        | 37.0  | 111  | 0.1215          | 0.9535   |
| 0.1221        | 38.0  | 114  | 0.1224          | 0.9535   |
| 0.1221        | 39.0  | 117  | 0.1222          | 0.9535   |
| 0.1135        | 40.0  | 120  | 0.1217          | 0.9535   |


### Framework versions

- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1