File size: 31,782 Bytes
8237492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
2023-02-18 13:15:36,723	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'asahi': 0}, 'model_dir': './logs\\32k'}
2023-02-18 13:15:36,724	32k	WARNING	K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
2023-02-18 13:16:46,085	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'asahi': 0}, 'model_dir': './logs\\32k'}
2023-02-18 13:16:46,086	32k	WARNING	K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
2023-02-18 13:16:51,625	32k	INFO	emb_g.weight is not in the checkpoint
2023-02-18 13:16:51,737	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-18 13:16:52,797	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-18 13:17:24,697	32k	INFO	Train Epoch: 1 [0%]
2023-02-18 13:17:24,698	32k	INFO	[3.3069984912872314, 2.2735390663146973, 12.671528816223145, 44.619842529296875, 10.824443817138672, 0, 0.0001]
2023-02-18 13:17:30,498	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-18 13:17:45,076	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-18 13:19:47,084	32k	INFO	====> Epoch: 1
2023-02-18 13:22:06,314	32k	INFO	====> Epoch: 2
2023-02-18 13:23:20,386	32k	INFO	Train Epoch: 3 [44%]
2023-02-18 13:23:20,387	32k	INFO	[2.3857059478759766, 2.734795093536377, 12.341865539550781, 25.23939323425293, 1.1707755327224731, 200, 9.99750015625e-05]
2023-02-18 13:24:25,089	32k	INFO	====> Epoch: 3
2023-02-18 13:26:44,542	32k	INFO	====> Epoch: 4
2023-02-18 13:28:50,668	32k	INFO	Train Epoch: 5 [88%]
2023-02-18 13:28:50,668	32k	INFO	[2.599891185760498, 2.339749813079834, 8.97850513458252, 18.280649185180664, 1.2124148607254028, 400, 9.995000937421877e-05]
2023-02-18 13:29:04,051	32k	INFO	====> Epoch: 5
2023-02-18 13:31:22,495	32k	INFO	====> Epoch: 6
2023-02-18 13:33:41,390	32k	INFO	====> Epoch: 7
2023-02-18 13:34:46,904	32k	INFO	Train Epoch: 8 [32%]
2023-02-18 13:34:46,904	32k	INFO	[2.428616523742676, 2.5334784984588623, 7.50093936920166, 13.943485260009766, 1.0122454166412354, 600, 9.991253280566489e-05]
2023-02-18 13:36:46,611	32k	INFO	====> Epoch: 8
2023-02-18 13:39:42,611	32k	INFO	====> Epoch: 9
2023-02-18 13:42:01,156	32k	INFO	Train Epoch: 10 [76%]
2023-02-18 13:42:01,156	32k	INFO	[2.539777994155884, 1.9696028232574463, 10.870598793029785, 20.18303680419922, 1.0394906997680664, 800, 9.98875562335968e-05]
2023-02-18 13:42:36,519	32k	INFO	====> Epoch: 10
2023-02-18 13:45:30,606	32k	INFO	====> Epoch: 11
2023-02-18 13:48:27,421	32k	INFO	====> Epoch: 12
2023-02-18 13:49:20,806	32k	INFO	Train Epoch: 13 [20%]
2023-02-18 13:49:20,806	32k	INFO	[2.5772485733032227, 2.3823914527893066, 10.536639213562012, 20.34115219116211, 0.9894436597824097, 1000, 9.98501030820433e-05]
2023-02-18 13:49:25,467	32k	INFO	Saving model and optimizer state at iteration 13 to ./logs\32k\G_1000.pth
2023-02-18 13:49:42,627	32k	INFO	Saving model and optimizer state at iteration 13 to ./logs\32k\D_1000.pth
2023-02-18 13:51:31,762	32k	INFO	====> Epoch: 13
2023-02-18 13:53:49,535	32k	INFO	====> Epoch: 14
2023-02-18 13:55:46,291	32k	INFO	Train Epoch: 15 [63%]
2023-02-18 13:55:46,292	32k	INFO	[2.4663658142089844, 2.320800542831421, 11.314515113830566, 21.392370223999023, 1.4117159843444824, 1200, 9.982514211643064e-05]
2023-02-18 13:56:38,705	32k	INFO	====> Epoch: 15
2023-02-18 13:59:28,519	32k	INFO	====> Epoch: 16
2023-02-18 14:02:17,766	32k	INFO	====> Epoch: 17
2023-02-18 14:02:53,341	32k	INFO	Train Epoch: 18 [7%]
2023-02-18 14:02:53,341	32k	INFO	[2.418344736099243, 2.726172924041748, 12.386476516723633, 20.22224998474121, 1.1661674976348877, 1400, 9.978771236724554e-05]
2023-02-18 14:04:58,741	32k	INFO	====> Epoch: 18
2023-02-18 14:07:40,854	32k	INFO	====> Epoch: 19
2023-02-18 14:09:22,959	32k	INFO	Train Epoch: 20 [51%]
2023-02-18 14:09:22,959	32k	INFO	[2.392646551132202, 2.6650896072387695, 11.132346153259277, 20.615514755249023, 1.3077448606491089, 1600, 9.976276699833672e-05]
2023-02-18 14:10:37,010	32k	INFO	====> Epoch: 20
2023-02-18 14:13:17,208	32k	INFO	====> Epoch: 21
2023-02-18 14:15:24,422	32k	INFO	Train Epoch: 22 [95%]
2023-02-18 14:15:24,423	32k	INFO	[2.4040393829345703, 2.239150047302246, 12.231693267822266, 20.794464111328125, 0.9484589695930481, 1800, 9.973782786538036e-05]
2023-02-18 14:15:30,868	32k	INFO	====> Epoch: 22
2023-02-18 14:17:59,875	32k	INFO	====> Epoch: 23
2023-02-18 14:20:20,355	32k	INFO	====> Epoch: 24
2023-02-18 14:21:30,802	32k	INFO	Train Epoch: 25 [39%]
2023-02-18 14:21:30,802	32k	INFO	[2.4141862392425537, 2.3016927242279053, 13.739073753356934, 21.9274959564209, 1.2016680240631104, 2000, 9.970043085494672e-05]
2023-02-18 14:21:35,541	32k	INFO	Saving model and optimizer state at iteration 25 to ./logs\32k\G_2000.pth
2023-02-18 14:21:51,929	32k	INFO	Saving model and optimizer state at iteration 25 to ./logs\32k\D_2000.pth
2023-02-18 14:23:05,507	32k	INFO	====> Epoch: 25
2023-02-18 14:25:24,529	32k	INFO	====> Epoch: 26
2023-02-18 14:27:25,212	32k	INFO	Train Epoch: 27 [83%]
2023-02-18 14:27:25,212	32k	INFO	[2.485182285308838, 2.1557278633117676, 8.625478744506836, 17.08354377746582, 0.8900912404060364, 2200, 9.967550730505221e-05]
2023-02-18 14:27:44,585	32k	INFO	====> Epoch: 27
2023-02-18 14:30:04,953	32k	INFO	====> Epoch: 28
2023-02-18 14:32:24,245	32k	INFO	====> Epoch: 29
2023-02-18 14:33:19,017	32k	INFO	Train Epoch: 30 [27%]
2023-02-18 14:33:19,018	32k	INFO	[2.314979076385498, 2.591787099838257, 8.379956245422363, 17.788272857666016, 0.9263051152229309, 2400, 9.963813366190753e-05]
2023-02-18 14:34:43,546	32k	INFO	====> Epoch: 30
2023-02-18 14:37:04,473	32k	INFO	====> Epoch: 31
2023-02-18 14:38:51,951	32k	INFO	Train Epoch: 32 [71%]
2023-02-18 14:38:51,952	32k	INFO	[2.530869960784912, 2.346663475036621, 9.290014266967773, 17.95098114013672, 0.8468811511993408, 2600, 9.961322568533789e-05]
2023-02-18 14:39:25,876	32k	INFO	====> Epoch: 32
2023-02-18 14:41:46,299	32k	INFO	====> Epoch: 33
2023-02-18 14:44:06,079	32k	INFO	====> Epoch: 34
2023-02-18 14:44:47,360	32k	INFO	Train Epoch: 35 [15%]
2023-02-18 14:44:47,360	32k	INFO	[2.244014024734497, 2.303522825241089, 12.0291109085083, 20.503751754760742, 1.072399616241455, 2800, 9.957587539488128e-05]
2023-02-18 14:46:28,086	32k	INFO	====> Epoch: 35
2023-02-18 14:48:49,406	32k	INFO	====> Epoch: 36
2023-02-18 14:50:21,699	32k	INFO	Train Epoch: 37 [59%]
2023-02-18 14:50:21,700	32k	INFO	[2.5226240158081055, 2.235443115234375, 8.532631874084473, 17.06432342529297, 0.766471266746521, 3000, 9.95509829819056e-05]
2023-02-18 14:50:26,448	32k	INFO	Saving model and optimizer state at iteration 37 to ./logs\32k\G_3000.pth
2023-02-18 14:50:44,023	32k	INFO	Saving model and optimizer state at iteration 37 to ./logs\32k\D_3000.pth
2023-02-18 14:51:35,085	32k	INFO	====> Epoch: 37
2023-02-18 14:53:54,527	32k	INFO	====> Epoch: 38
2023-02-18 14:56:14,690	32k	INFO	====> Epoch: 39
2023-02-18 14:56:41,714	32k	INFO	Train Epoch: 40 [2%]
2023-02-18 14:56:41,715	32k	INFO	[2.545912027359009, 2.1446070671081543, 11.442967414855957, 19.688390731811523, 1.1071820259094238, 3200, 9.951365602954526e-05]
2023-02-18 14:58:35,254	32k	INFO	====> Epoch: 40
2023-02-18 15:00:55,720	32k	INFO	====> Epoch: 41
2023-02-18 15:02:14,254	32k	INFO	Train Epoch: 42 [46%]
2023-02-18 15:02:14,256	32k	INFO	[2.4656083583831787, 2.3087027072906494, 8.831151962280273, 20.15584373474121, 0.6311391592025757, 3400, 9.948877917043875e-05]
2023-02-18 15:03:21,337	32k	INFO	====> Epoch: 42
2023-02-18 15:05:42,560	32k	INFO	====> Epoch: 43
2023-02-18 15:07:53,352	32k	INFO	Train Epoch: 44 [90%]
2023-02-18 15:07:53,353	32k	INFO	[2.423257827758789, 2.4318912029266357, 8.438339233398438, 18.954322814941406, 1.1647067070007324, 3600, 9.94639085301583e-05]
2023-02-18 15:08:03,537	32k	INFO	====> Epoch: 44
2023-02-18 15:10:23,855	32k	INFO	====> Epoch: 45
2023-02-18 15:12:44,427	32k	INFO	====> Epoch: 46
2023-02-18 15:13:48,785	32k	INFO	Train Epoch: 47 [34%]
2023-02-18 15:13:48,786	32k	INFO	[2.1796677112579346, 2.7173850536346436, 11.570164680480957, 17.406679153442383, 1.1616911888122559, 3800, 9.942661422663591e-05]
2023-02-18 15:15:05,864	32k	INFO	====> Epoch: 47
2023-02-18 15:17:26,837	32k	INFO	====> Epoch: 48
2023-02-18 15:19:22,655	32k	INFO	Train Epoch: 49 [78%]
2023-02-18 15:19:22,656	32k	INFO	[2.7236239910125732, 2.036970376968384, 4.593118667602539, 7.638784408569336, 1.1607017517089844, 4000, 9.940175912662009e-05]
2023-02-18 15:19:27,513	32k	INFO	Saving model and optimizer state at iteration 49 to ./logs\32k\G_4000.pth
2023-02-18 15:19:45,391	32k	INFO	Saving model and optimizer state at iteration 49 to ./logs\32k\D_4000.pth
2023-02-18 15:20:13,800	32k	INFO	====> Epoch: 49
2023-02-18 15:22:33,780	32k	INFO	====> Epoch: 50
2023-02-18 15:24:53,853	32k	INFO	====> Epoch: 51
2023-02-18 15:25:43,949	32k	INFO	Train Epoch: 52 [22%]
2023-02-18 15:25:43,949	32k	INFO	[2.6045544147491455, 2.4030346870422363, 10.298624992370605, 17.781221389770508, 0.9256278276443481, 4200, 9.936448812621091e-05]
2023-02-18 15:27:14,911	32k	INFO	====> Epoch: 52
2023-02-18 15:29:35,372	32k	INFO	====> Epoch: 53
2023-02-18 15:31:16,948	32k	INFO	Train Epoch: 54 [66%]
2023-02-18 15:31:16,948	32k	INFO	[2.4962995052337646, 2.134711503982544, 9.151311874389648, 16.35634422302246, 0.862859308719635, 4400, 9.933964855674948e-05]
2023-02-18 15:31:56,360	32k	INFO	====> Epoch: 54
2023-02-18 15:34:16,854	32k	INFO	====> Epoch: 55
2023-02-18 15:36:36,402	32k	INFO	====> Epoch: 56
2023-02-18 15:37:12,111	32k	INFO	Train Epoch: 57 [10%]
2023-02-18 15:37:12,122	32k	INFO	[2.2373344898223877, 2.4235143661499023, 11.974388122558594, 18.775772094726562, 0.9912294745445251, 4600, 9.930240084489267e-05]
2023-02-18 15:38:57,440	32k	INFO	====> Epoch: 57
2023-02-18 15:41:17,548	32k	INFO	====> Epoch: 58
2023-02-18 15:42:44,716	32k	INFO	Train Epoch: 59 [54%]
2023-02-18 15:42:44,716	32k	INFO	[2.32612943649292, 2.505492687225342, 13.369050025939941, 21.683101654052734, 1.2278294563293457, 4800, 9.927757679628145e-05]
2023-02-18 15:43:38,469	32k	INFO	====> Epoch: 59
2023-02-18 15:45:59,553	32k	INFO	====> Epoch: 60
2023-02-18 15:48:18,553	32k	INFO	Train Epoch: 61 [98%]
2023-02-18 15:48:18,554	32k	INFO	[2.332657814025879, 2.309508800506592, 11.992413520812988, 21.970182418823242, 1.1714390516281128, 5000, 9.92527589532945e-05]
2023-02-18 15:48:23,341	32k	INFO	Saving model and optimizer state at iteration 61 to ./logs\32k\G_5000.pth
2023-02-18 15:48:41,872	32k	INFO	Saving model and optimizer state at iteration 61 to ./logs\32k\D_5000.pth
2023-02-18 15:48:47,201	32k	INFO	====> Epoch: 61
2023-02-18 15:51:06,990	32k	INFO	====> Epoch: 62
2023-02-18 15:53:26,772	32k	INFO	====> Epoch: 63
2023-02-18 15:54:39,947	32k	INFO	Train Epoch: 64 [41%]
2023-02-18 15:54:39,947	32k	INFO	[2.581521987915039, 2.197911500930786, 10.526808738708496, 18.230852127075195, 0.5856090784072876, 5200, 9.921554382096622e-05]
2023-02-18 15:56:05,134	32k	INFO	====> Epoch: 64
2023-02-18 15:59:16,071	32k	INFO	====> Epoch: 65
2023-02-18 16:02:00,609	32k	INFO	Train Epoch: 66 [85%]
2023-02-18 16:02:00,610	32k	INFO	[2.4432015419006348, 2.4601447582244873, 11.853116989135742, 20.211322784423828, 0.9781383872032166, 5400, 9.919074148525384e-05]
2023-02-18 16:02:23,489	32k	INFO	====> Epoch: 66
2023-02-18 16:05:35,609	32k	INFO	====> Epoch: 67
2023-02-18 16:08:44,666	32k	INFO	====> Epoch: 68
2023-02-18 16:09:56,545	32k	INFO	Train Epoch: 69 [29%]
2023-02-18 16:09:56,546	32k	INFO	[2.181422233581543, 2.8529210090637207, 11.916988372802734, 21.838470458984375, 1.0593645572662354, 5600, 9.915354960656915e-05]
2023-02-18 16:11:49,999	32k	INFO	====> Epoch: 69
2023-02-18 16:14:57,604	32k	INFO	====> Epoch: 70
2023-02-18 16:17:27,420	32k	INFO	Train Epoch: 71 [73%]
2023-02-18 16:17:27,420	32k	INFO	[1.9035147428512573, 3.021906852722168, 15.565659523010254, 21.79709815979004, 0.946706235408783, 5800, 9.912876276844171e-05]
2023-02-18 16:18:11,589	32k	INFO	====> Epoch: 71
2023-02-18 16:21:19,944	32k	INFO	====> Epoch: 72
2023-02-18 16:24:31,441	32k	INFO	====> Epoch: 73
2023-02-18 16:25:23,054	32k	INFO	Train Epoch: 74 [17%]
2023-02-18 16:25:23,054	32k	INFO	[2.3623337745666504, 2.5799450874328613, 7.930063247680664, 17.0313777923584, 1.2069950103759766, 6000, 9.909159412887068e-05]
2023-02-18 16:25:27,842	32k	INFO	Saving model and optimizer state at iteration 74 to ./logs\32k\G_6000.pth
2023-02-18 16:25:48,638	32k	INFO	Saving model and optimizer state at iteration 74 to ./logs\32k\D_6000.pth
2023-02-18 16:28:07,473	32k	INFO	====> Epoch: 74
2023-02-18 16:31:15,829	32k	INFO	====> Epoch: 75
2023-02-18 16:33:18,999	32k	INFO	Train Epoch: 76 [61%]
2023-02-18 16:33:18,999	32k	INFO	[2.2943310737609863, 2.8715434074401855, 10.26145076751709, 14.741254806518555, 1.2504029273986816, 6200, 9.906682277864462e-05]
2023-02-18 16:34:18,996	32k	INFO	====> Epoch: 76
2023-02-18 16:37:25,713	32k	INFO	====> Epoch: 77
2023-02-18 16:40:29,196	32k	INFO	====> Epoch: 78
2023-02-18 16:41:01,456	32k	INFO	Train Epoch: 79 [5%]
2023-02-18 16:41:01,457	32k	INFO	[2.1732935905456543, 2.650221347808838, 16.90458869934082, 23.275943756103516, 0.5908531546592712, 6400, 9.902967736366644e-05]
2023-02-18 16:43:35,665	32k	INFO	====> Epoch: 79
2023-02-18 16:46:40,281	32k	INFO	====> Epoch: 80
2023-02-18 16:48:24,511	32k	INFO	Train Epoch: 81 [49%]
2023-02-18 16:48:24,511	32k	INFO	[2.488065719604492, 2.189055919647217, 11.57202434539795, 20.690433502197266, 1.0104312896728516, 6600, 9.900492149166423e-05]
2023-02-18 16:49:45,682	32k	INFO	====> Epoch: 81
2023-02-18 16:52:48,841	32k	INFO	====> Epoch: 82
2023-02-18 16:55:45,194	32k	INFO	Train Epoch: 83 [93%]
2023-02-18 16:55:45,195	32k	INFO	[2.363006591796875, 2.5977485179901123, 11.85480785369873, 20.72893714904785, 1.1449049711227417, 6800, 9.89801718082432e-05]
2023-02-18 16:55:54,936	32k	INFO	====> Epoch: 83
2023-02-18 16:59:01,228	32k	INFO	====> Epoch: 84
2023-02-18 17:02:06,730	32k	INFO	====> Epoch: 85
2023-02-18 17:03:30,501	32k	INFO	Train Epoch: 86 [37%]
2023-02-18 17:03:30,502	32k	INFO	[2.6049516201019287, 2.1475470066070557, 8.085922241210938, 17.217309951782227, 0.45161640644073486, 7000, 9.894305888331732e-05]
2023-02-18 17:03:35,389	32k	INFO	Saving model and optimizer state at iteration 86 to ./logs\32k\G_7000.pth
2023-02-18 17:03:53,165	32k	INFO	Saving model and optimizer state at iteration 86 to ./logs\32k\D_7000.pth
2023-02-18 17:05:34,400	32k	INFO	====> Epoch: 86
2023-02-18 17:08:41,181	32k	INFO	====> Epoch: 87
2023-02-18 17:11:16,739	32k	INFO	Train Epoch: 88 [80%]
2023-02-18 17:11:16,739	32k	INFO	[2.382134199142456, 2.5343871116638184, 9.086328506469727, 14.694384574890137, 0.7267480492591858, 7200, 9.891832466458178e-05]
2023-02-18 17:11:47,110	32k	INFO	====> Epoch: 88
2023-02-18 17:14:52,007	32k	INFO	====> Epoch: 89
2023-02-18 17:17:56,142	32k	INFO	====> Epoch: 90
2023-02-18 17:19:01,057	32k	INFO	Train Epoch: 91 [24%]
2023-02-18 17:19:01,058	32k	INFO	[2.4476230144500732, 2.305821418762207, 8.499305725097656, 19.25327491760254, 0.8112967610359192, 7400, 9.888123492943583e-05]
2023-02-18 17:21:03,549	32k	INFO	====> Epoch: 91
2023-02-18 17:24:06,841	32k	INFO	====> Epoch: 92
2023-02-18 17:26:22,681	32k	INFO	Train Epoch: 93 [68%]
2023-02-18 17:26:22,688	32k	INFO	[2.185331344604492, 2.6872944831848145, 15.124022483825684, 21.444419860839844, 1.0479180812835693, 7600, 9.885651616572276e-05]
2023-02-18 17:27:13,773	32k	INFO	====> Epoch: 93
2023-02-18 17:30:21,451	32k	INFO	====> Epoch: 94
2023-02-18 17:33:29,561	32k	INFO	====> Epoch: 95
2023-02-18 17:34:13,186	32k	INFO	Train Epoch: 96 [12%]
2023-02-18 17:34:13,187	32k	INFO	[2.347987174987793, 2.395303964614868, 9.463523864746094, 14.174880981445312, 0.40106111764907837, 7800, 9.881944960586671e-05]
2023-02-18 17:36:35,656	32k	INFO	====> Epoch: 96
2023-02-18 17:39:42,149	32k	INFO	====> Epoch: 97
2023-02-18 17:41:37,677	32k	INFO	Train Epoch: 98 [56%]
2023-02-18 17:41:37,677	32k	INFO	[2.503045082092285, 2.4578006267547607, 11.118446350097656, 18.708005905151367, 1.2328639030456543, 8000, 9.879474628751914e-05]
2023-02-18 17:41:42,468	32k	INFO	Saving model and optimizer state at iteration 98 to ./logs\32k\G_8000.pth
2023-02-18 17:41:59,137	32k	INFO	Saving model and optimizer state at iteration 98 to ./logs\32k\D_8000.pth
2023-02-18 17:43:11,648	32k	INFO	====> Epoch: 98
2023-02-18 17:46:14,721	32k	INFO	====> Epoch: 99
2023-02-18 17:49:19,452	32k	INFO	====> Epoch: 100
2023-02-18 17:49:43,660	32k	INFO	Train Epoch: 101 [0%]
2023-02-18 17:49:43,660	32k	INFO	[2.5995795726776123, 2.3254148960113525, 7.9163641929626465, 16.673885345458984, 0.7785255908966064, 8200, 9.875770288847208e-05]
2023-02-18 17:52:24,475	32k	INFO	====> Epoch: 101
2023-02-18 17:55:27,166	32k	INFO	====> Epoch: 102
2023-02-18 17:57:03,042	32k	INFO	Train Epoch: 103 [44%]
2023-02-18 17:57:03,042	32k	INFO	[2.415909767150879, 2.438415288925171, 10.601877212524414, 19.733566284179688, 0.9555046558380127, 8400, 9.873301500583906e-05]
2023-02-18 17:58:33,665	32k	INFO	====> Epoch: 103
2023-02-18 18:01:38,657	32k	INFO	====> Epoch: 104
2023-02-18 18:04:28,117	32k	INFO	Train Epoch: 105 [88%]
2023-02-18 18:04:28,117	32k	INFO	[2.630995035171509, 2.1970698833465576, 10.794513702392578, 19.191852569580078, 0.7746363878250122, 8600, 9.870833329479095e-05]
2023-02-18 18:04:45,705	32k	INFO	====> Epoch: 105
2023-02-18 18:07:52,602	32k	INFO	====> Epoch: 106
2023-02-18 18:10:57,947	32k	INFO	====> Epoch: 107
2023-02-18 18:12:12,513	32k	INFO	Train Epoch: 108 [32%]
2023-02-18 18:12:12,513	32k	INFO	[2.474118709564209, 2.5281760692596436, 7.3929548263549805, 14.464062690734863, 0.6939061880111694, 8800, 9.867132229656573e-05]
2023-02-18 18:14:00,834	32k	INFO	====> Epoch: 108
2023-02-18 18:17:07,249	32k	INFO	====> Epoch: 109
2023-02-18 18:19:34,317	32k	INFO	Train Epoch: 110 [76%]
2023-02-18 18:19:34,318	32k	INFO	[2.6343023777008057, 2.198140859603882, 9.245353698730469, 15.40959644317627, 0.5494029521942139, 9000, 9.864665600773098e-05]
2023-02-18 18:19:39,249	32k	INFO	Saving model and optimizer state at iteration 110 to ./logs\32k\G_9000.pth
2023-02-18 18:19:56,382	32k	INFO	Saving model and optimizer state at iteration 110 to ./logs\32k\D_9000.pth
2023-02-18 18:20:37,170	32k	INFO	====> Epoch: 110
2023-02-18 18:23:43,211	32k	INFO	====> Epoch: 111
2023-02-18 18:26:56,368	32k	INFO	====> Epoch: 112
2023-02-18 18:27:52,671	32k	INFO	Train Epoch: 113 [20%]
2023-02-18 18:27:52,672	32k	INFO	[2.1823391914367676, 2.942514419555664, 12.15264892578125, 19.10240364074707, 0.7193117141723633, 9200, 9.86096681355974e-05]
2023-02-18 18:30:11,006	32k	INFO	====> Epoch: 113
2023-02-18 18:33:21,420	32k	INFO	====> Epoch: 114
2023-02-18 18:35:32,306	32k	INFO	Train Epoch: 115 [63%]
2023-02-18 18:35:32,306	32k	INFO	[2.3463950157165527, 2.4623875617980957, 13.173855781555176, 21.46563148498535, 0.5739250183105469, 9400, 9.858501725933955e-05]
2023-02-18 18:36:30,806	32k	INFO	====> Epoch: 115
2023-02-18 18:39:41,614	32k	INFO	====> Epoch: 116
2023-02-18 18:42:56,740	32k	INFO	====> Epoch: 117
2023-02-18 18:43:32,935	32k	INFO	Train Epoch: 118 [7%]
2023-02-18 18:43:32,936	32k	INFO	[2.4906504154205322, 2.447946786880493, 11.754008293151855, 20.466285705566406, 0.8161544799804688, 9600, 9.854805249884741e-05]
2023-02-18 18:46:10,002	32k	INFO	====> Epoch: 118
2023-02-18 18:49:20,693	32k	INFO	====> Epoch: 119
2023-02-18 18:51:10,250	32k	INFO	Train Epoch: 120 [51%]
2023-02-18 18:51:10,251	32k	INFO	[2.4490957260131836, 2.738856077194214, 12.3360013961792, 19.310625076293945, 0.8394557237625122, 9800, 9.8523417025536e-05]
2023-02-18 18:52:29,403	32k	INFO	====> Epoch: 120
2023-02-18 18:55:31,737	32k	INFO	====> Epoch: 121
2023-02-18 18:58:27,659	32k	INFO	Train Epoch: 122 [95%]
2023-02-18 18:58:27,660	32k	INFO	[2.409554958343506, 2.3621697425842285, 13.538979530334473, 20.507600784301758, 1.1963660717010498, 10000, 9.8498787710708e-05]
2023-02-18 18:58:32,617	32k	INFO	Saving model and optimizer state at iteration 122 to ./logs\32k\G_10000.pth
2023-02-18 18:58:50,163	32k	INFO	Saving model and optimizer state at iteration 122 to ./logs\32k\D_10000.pth
2023-02-18 18:58:59,800	32k	INFO	====> Epoch: 122
2023-02-18 19:02:03,872	32k	INFO	====> Epoch: 123
2023-02-18 19:05:06,686	32k	INFO	====> Epoch: 124
2023-02-18 19:06:34,823	32k	INFO	Train Epoch: 125 [39%]
2023-02-18 19:06:34,824	32k	INFO	[2.345095634460449, 2.178450345993042, 12.377983093261719, 19.660619735717773, 0.8193285465240479, 10200, 9.846185528225477e-05]
2023-02-18 19:08:12,812	32k	INFO	====> Epoch: 125
2023-02-18 19:11:15,775	32k	INFO	====> Epoch: 126
2023-02-18 19:13:54,645	32k	INFO	Train Epoch: 127 [83%]
2023-02-18 19:13:54,645	32k	INFO	[2.5806427001953125, 2.1979994773864746, 11.834625244140625, 18.687227249145508, 1.0435174703598022, 10400, 9.84372413569007e-05]
2023-02-18 19:14:19,451	32k	INFO	====> Epoch: 127
2023-02-18 19:17:26,036	32k	INFO	====> Epoch: 128
2023-02-18 19:20:29,081	32k	INFO	====> Epoch: 129
2023-02-18 19:21:35,465	32k	INFO	Train Epoch: 130 [27%]
2023-02-18 19:21:35,466	32k	INFO	[2.351133346557617, 2.378753423690796, 10.939573287963867, 19.32187271118164, 0.8272395730018616, 10600, 9.840033200544528e-05]
2023-02-18 19:23:33,960	32k	INFO	====> Epoch: 130
2023-02-18 19:26:38,810	32k	INFO	====> Epoch: 131
2023-02-18 19:28:57,008	32k	INFO	Train Epoch: 132 [71%]
2023-02-18 19:28:57,048	32k	INFO	[2.4666779041290283, 2.4331767559051514, 12.116047859191895, 20.228519439697266, 1.3147556781768799, 10800, 9.837573345994909e-05]
2023-02-18 19:29:43,726	32k	INFO	====> Epoch: 132
2023-02-18 19:32:50,848	32k	INFO	====> Epoch: 133
2023-02-18 19:35:56,257	32k	INFO	====> Epoch: 134
2023-02-18 19:36:44,716	32k	INFO	Train Epoch: 135 [15%]
2023-02-18 19:36:44,716	32k	INFO	[2.255558490753174, 2.5198585987091064, 12.21342945098877, 20.34984588623047, 1.0012221336364746, 11000, 9.833884717107196e-05]
2023-02-18 19:36:49,985	32k	INFO	Saving model and optimizer state at iteration 135 to ./logs\32k\G_11000.pth
2023-02-18 19:37:07,494	32k	INFO	Saving model and optimizer state at iteration 135 to ./logs\32k\D_11000.pth
2023-02-18 19:39:27,828	32k	INFO	====> Epoch: 135
2023-02-18 19:42:33,821	32k	INFO	====> Epoch: 136
2023-02-18 19:44:35,721	32k	INFO	Train Epoch: 137 [59%]
2023-02-18 19:44:35,721	32k	INFO	[2.6769304275512695, 2.0602264404296875, 9.101190567016602, 14.852888107299805, 0.7094751000404358, 11200, 9.831426399582366e-05]
2023-02-18 19:45:41,712	32k	INFO	====> Epoch: 137
2023-02-18 19:48:48,842	32k	INFO	====> Epoch: 138
2023-02-18 19:51:55,030	32k	INFO	====> Epoch: 139
2023-02-18 19:52:23,208	32k	INFO	Train Epoch: 140 [2%]
2023-02-18 19:52:23,208	32k	INFO	[2.416285753250122, 2.515517234802246, 11.539551734924316, 18.85158348083496, 0.7964726090431213, 11400, 9.827740075511432e-05]
2023-02-18 19:55:00,407	32k	INFO	====> Epoch: 140
2023-02-18 19:58:07,313	32k	INFO	====> Epoch: 141
2023-02-18 19:59:48,759	32k	INFO	Train Epoch: 142 [46%]
2023-02-18 19:59:48,759	32k	INFO	[2.6437501907348633, 2.2807607650756836, 7.438623428344727, 16.5651798248291, 0.5293334126472473, 11600, 9.825283294050992e-05]
2023-02-18 20:01:13,320	32k	INFO	====> Epoch: 142
2023-02-18 20:04:19,009	32k	INFO	====> Epoch: 143
2023-02-18 20:07:08,623	32k	INFO	Train Epoch: 144 [90%]
2023-02-18 20:07:08,623	32k	INFO	[2.4082539081573486, 2.348365306854248, 13.17957878112793, 20.185009002685547, 1.1610592603683472, 11800, 9.822827126747529e-05]
2023-02-18 20:07:22,174	32k	INFO	====> Epoch: 144
2023-02-18 20:10:24,073	32k	INFO	====> Epoch: 145
2023-02-18 20:13:29,961	32k	INFO	====> Epoch: 146
2023-02-18 20:14:49,654	32k	INFO	Train Epoch: 147 [34%]
2023-02-18 20:14:49,655	32k	INFO	[2.6301674842834473, 2.0582547187805176, 7.999320983886719, 13.03806209564209, 0.6115504503250122, 12000, 9.819144027000834e-05]
2023-02-18 20:14:54,379	32k	INFO	Saving model and optimizer state at iteration 147 to ./logs\32k\G_12000.pth
2023-02-18 20:15:13,472	32k	INFO	Saving model and optimizer state at iteration 147 to ./logs\32k\D_12000.pth
2023-02-18 20:16:32,707	32k	INFO	====> Epoch: 147
2023-02-18 20:18:51,573	32k	INFO	====> Epoch: 148
2023-02-18 20:20:45,616	32k	INFO	Train Epoch: 149 [78%]
2023-02-18 20:20:45,616	32k	INFO	[2.5716872215270996, 2.044759511947632, 7.352247714996338, 11.54852294921875, 0.6284887790679932, 12200, 9.816689394418209e-05]
2023-02-18 20:21:09,668	32k	INFO	====> Epoch: 149
2023-02-18 20:23:28,296	32k	INFO	====> Epoch: 150
2023-02-18 20:25:46,478	32k	INFO	====> Epoch: 151
2023-02-18 20:26:35,115	32k	INFO	Train Epoch: 152 [22%]
2023-02-18 20:26:35,116	32k	INFO	[2.7496554851531982, 2.115495443344116, 8.033178329467773, 17.09941864013672, 0.5979650020599365, 12400, 9.813008596033443e-05]
2023-02-18 20:28:04,631	32k	INFO	====> Epoch: 152
2023-02-18 20:30:22,610	32k	INFO	====> Epoch: 153
2023-02-18 20:32:02,056	32k	INFO	Train Epoch: 154 [66%]
2023-02-18 20:32:02,057	32k	INFO	[2.5520501136779785, 2.038939952850342, 9.094746589660645, 17.24423599243164, 0.9727638959884644, 12600, 9.810555497212693e-05]
2023-02-18 20:32:40,442	32k	INFO	====> Epoch: 154
2023-02-18 20:34:58,936	32k	INFO	====> Epoch: 155
2023-02-18 20:37:23,270	32k	INFO	====> Epoch: 156
2023-02-18 20:37:58,290	32k	INFO	Train Epoch: 157 [10%]
2023-02-18 20:37:58,290	32k	INFO	[2.4157652854919434, 2.302234411239624, 9.094962120056152, 15.25003433227539, 0.7912210822105408, 12800, 9.806876998751865e-05]
2023-02-18 20:39:42,082	32k	INFO	====> Epoch: 157
2023-02-18 20:42:09,378	32k	INFO	====> Epoch: 158
2023-02-18 20:43:36,431	32k	INFO	Train Epoch: 159 [54%]
2023-02-18 20:43:36,431	32k	INFO	[2.303689956665039, 2.5022518634796143, 12.047871589660645, 18.625017166137695, 0.8808897733688354, 13000, 9.804425432734629e-05]
2023-02-18 20:43:40,953	32k	INFO	Saving model and optimizer state at iteration 159 to ./logs\32k\G_13000.pth
2023-02-18 20:43:58,356	32k	INFO	Saving model and optimizer state at iteration 159 to ./logs\32k\D_13000.pth
2023-02-18 20:44:54,917	32k	INFO	====> Epoch: 159
2023-02-18 20:47:14,493	32k	INFO	====> Epoch: 160
2023-02-18 20:49:30,972	32k	INFO	Train Epoch: 161 [98%]
2023-02-18 20:49:30,973	32k	INFO	[2.311939001083374, 2.59867000579834, 12.213456153869629, 19.764371871948242, 0.9899132251739502, 13200, 9.801974479570593e-05]
2023-02-18 20:49:32,766	32k	INFO	====> Epoch: 161
2023-02-18 20:51:59,478	32k	INFO	====> Epoch: 162
2023-02-18 20:55:31,794	32k	INFO	====> Epoch: 163
2023-02-18 20:57:30,010	32k	INFO	Train Epoch: 164 [41%]
2023-02-18 20:57:30,010	32k	INFO	[2.86376690864563, 1.865500807762146, 5.887643814086914, 11.784518241882324, 1.020143747329712, 13400, 9.798299198589162e-05]
2023-02-18 20:59:20,512	32k	INFO	====> Epoch: 164
2023-02-18 21:03:06,854	32k	INFO	====> Epoch: 165
2023-02-18 21:06:30,117	32k	INFO	Train Epoch: 166 [85%]
2023-02-18 21:06:30,117	32k	INFO	[2.325920343399048, 2.6557977199554443, 11.842923164367676, 20.726858139038086, 0.6900365352630615, 13600, 9.795849776887939e-05]
2023-02-18 21:06:56,246	32k	INFO	====> Epoch: 166
2023-02-18 21:10:48,496	32k	INFO	====> Epoch: 167
2023-02-18 21:14:47,570	32k	INFO	====> Epoch: 168
2023-02-18 21:16:21,507	32k	INFO	Train Epoch: 169 [29%]
2023-02-18 21:16:21,507	32k	INFO	[2.5149126052856445, 2.531891345977783, 10.036737442016602, 18.885982513427734, 0.8873259425163269, 13800, 9.792176792382932e-05]
2023-02-18 21:18:35,252	32k	INFO	====> Epoch: 169
2023-02-18 21:22:06,753	32k	INFO	====> Epoch: 170
2023-02-18 21:24:54,047	32k	INFO	Train Epoch: 171 [73%]
2023-02-18 21:24:54,048	32k	INFO	[2.2129878997802734, 2.324878215789795, 15.463290214538574, 19.30773162841797, 0.8498368263244629, 14000, 9.789728901187598e-05]
2023-02-18 21:25:03,662	32k	INFO	Saving model and optimizer state at iteration 171 to ./logs\32k\G_14000.pth
2023-02-18 21:25:43,764	32k	INFO	Saving model and optimizer state at iteration 171 to ./logs\32k\D_14000.pth
2023-02-18 21:26:48,302	32k	INFO	====> Epoch: 171
2023-02-18 21:30:19,052	32k	INFO	====> Epoch: 172
2023-02-18 21:33:46,770	32k	INFO	====> Epoch: 173
2023-02-18 21:34:50,019	32k	INFO	Train Epoch: 174 [17%]
2023-02-18 21:34:50,019	32k	INFO	[2.4638266563415527, 2.162075996398926, 9.001068115234375, 17.737350463867188, 0.4494396448135376, 14200, 9.786058211724074e-05]
2023-02-18 21:37:15,289	32k	INFO	====> Epoch: 174
2023-02-18 21:40:41,023	32k	INFO	====> Epoch: 175
2023-02-18 21:43:06,569	32k	INFO	Train Epoch: 176 [61%]
2023-02-18 21:43:06,570	32k	INFO	[2.4940695762634277, 2.29329514503479, 9.759041786193848, 15.883288383483887, 0.6593114137649536, 14400, 9.783611850078301e-05]
2023-02-18 21:44:18,062	32k	INFO	====> Epoch: 176
2023-02-18 21:47:51,907	32k	INFO	====> Epoch: 177
2023-02-18 21:51:42,031	32k	INFO	====> Epoch: 178
2023-02-18 21:52:30,304	32k	INFO	Train Epoch: 179 [5%]
2023-02-18 21:52:30,305	32k	INFO	[2.24495267868042, 2.5450713634490967, 16.089956283569336, 20.423744201660156, 1.29641854763031, 14600, 9.779943454222217e-05]
2023-02-18 21:55:35,640	32k	INFO	====> Epoch: 179
2023-02-18 21:58:29,482	32k	INFO	====> Epoch: 180
2023-02-18 22:00:10,005	32k	INFO	Train Epoch: 181 [49%]
2023-02-18 22:00:10,005	32k	INFO	[2.0902342796325684, 2.3228907585144043, 15.107324600219727, 20.69207763671875, 0.6706202030181885, 14800, 9.777498621170277e-05]
2023-02-18 22:01:19,615	32k	INFO	====> Epoch: 181
2023-02-18 22:04:08,136	32k	INFO	====> Epoch: 182
2023-02-18 22:06:51,660	32k	INFO	Train Epoch: 183 [93%]
2023-02-18 22:06:51,662	32k	INFO	[2.6548900604248047, 2.4761009216308594, 8.531192779541016, 13.265990257263184, 0.7215445637702942, 15000, 9.7750543992884e-05]
2023-02-18 22:07:00,968	32k	INFO	Saving model and optimizer state at iteration 183 to ./logs\32k\G_15000.pth
2023-02-18 22:07:34,821	32k	INFO	Saving model and optimizer state at iteration 183 to ./logs\32k\D_15000.pth
2023-02-18 22:07:54,739	32k	INFO	====> Epoch: 183
2023-02-18 22:10:44,685	32k	INFO	====> Epoch: 184