Itoifi commited on
Commit
8237492
1 Parent(s): 2d78a6d

Upload 50 files

Browse files
32k-asahi/D_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38cd856d24a139b5df34cf8468a51564161b756baadc2612e4288fc656269e0a
3
+ size 561098185
32k-asahi/D_15000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4084599564bd0512086dc598a31c1a2b0b0080d641ed105f00d2d0e3fbce8c73
3
+ size 561098185
32k-asahi/D_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44f0d8c5f3484afe814c54da42b1c87d4e6b7f67e30ad01f2e626e49116ba460
3
+ size 561098185
32k-asahi/G_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57a2a9b82cc201667741595d88d964b723f7578d8dfb8eabfc5e4585b4ae55c8
3
+ size 699505437
32k-asahi/G_15000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61bf92589de169aba325efaba1d7b992381ba1e7f9b03edea2bf4c0385b4493f
3
+ size 699505437
32k-asahi/G_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b69a6158ed9c0ef28f617d96811f8b07696414bddff637bfaaeffbf61c5b513e
3
+ size 699505437
32k-asahi/config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 17920,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 384,
23
+ "port": "8001"
24
+ },
25
+ "data": {
26
+ "training_files": "filelists/train.txt",
27
+ "validation_files": "filelists/val.txt",
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 32000,
30
+ "filter_length": 1280,
31
+ "hop_length": 320,
32
+ "win_length": 1280,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null
36
+ },
37
+ "model": {
38
+ "inter_channels": 192,
39
+ "hidden_channels": 192,
40
+ "filter_channels": 768,
41
+ "n_heads": 2,
42
+ "n_layers": 6,
43
+ "kernel_size": 3,
44
+ "p_dropout": 0.1,
45
+ "resblock": "1",
46
+ "resblock_kernel_sizes": [
47
+ 3,
48
+ 7,
49
+ 11
50
+ ],
51
+ "resblock_dilation_sizes": [
52
+ [
53
+ 1,
54
+ 3,
55
+ 5
56
+ ],
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ]
67
+ ],
68
+ "upsample_rates": [
69
+ 10,
70
+ 8,
71
+ 2,
72
+ 2
73
+ ],
74
+ "upsample_initial_channel": 512,
75
+ "upsample_kernel_sizes": [
76
+ 16,
77
+ 16,
78
+ 4,
79
+ 4
80
+ ],
81
+ "n_layers_q": 3,
82
+ "use_spectral_norm": false,
83
+ "gin_channels": 256,
84
+ "ssl_dim": 256,
85
+ "n_speakers": 2
86
+ },
87
+ "spk": {
88
+ "asahi": 0
89
+ }
90
+ }
32k-asahi/train.log ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-02-18 13:15:36,723 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'asahi': 0}, 'model_dir': './logs\\32k'}
2
+ 2023-02-18 13:15:36,724 32k WARNING K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
3
+ 2023-02-18 13:16:46,085 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'asahi': 0}, 'model_dir': './logs\\32k'}
4
+ 2023-02-18 13:16:46,086 32k WARNING K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
5
+ 2023-02-18 13:16:51,625 32k INFO emb_g.weight is not in the checkpoint
6
+ 2023-02-18 13:16:51,737 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
7
+ 2023-02-18 13:16:52,797 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
8
+ 2023-02-18 13:17:24,697 32k INFO Train Epoch: 1 [0%]
9
+ 2023-02-18 13:17:24,698 32k INFO [3.3069984912872314, 2.2735390663146973, 12.671528816223145, 44.619842529296875, 10.824443817138672, 0, 0.0001]
10
+ 2023-02-18 13:17:30,498 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
11
+ 2023-02-18 13:17:45,076 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
12
+ 2023-02-18 13:19:47,084 32k INFO ====> Epoch: 1
13
+ 2023-02-18 13:22:06,314 32k INFO ====> Epoch: 2
14
+ 2023-02-18 13:23:20,386 32k INFO Train Epoch: 3 [44%]
15
+ 2023-02-18 13:23:20,387 32k INFO [2.3857059478759766, 2.734795093536377, 12.341865539550781, 25.23939323425293, 1.1707755327224731, 200, 9.99750015625e-05]
16
+ 2023-02-18 13:24:25,089 32k INFO ====> Epoch: 3
17
+ 2023-02-18 13:26:44,542 32k INFO ====> Epoch: 4
18
+ 2023-02-18 13:28:50,668 32k INFO Train Epoch: 5 [88%]
19
+ 2023-02-18 13:28:50,668 32k INFO [2.599891185760498, 2.339749813079834, 8.97850513458252, 18.280649185180664, 1.2124148607254028, 400, 9.995000937421877e-05]
20
+ 2023-02-18 13:29:04,051 32k INFO ====> Epoch: 5
21
+ 2023-02-18 13:31:22,495 32k INFO ====> Epoch: 6
22
+ 2023-02-18 13:33:41,390 32k INFO ====> Epoch: 7
23
+ 2023-02-18 13:34:46,904 32k INFO Train Epoch: 8 [32%]
24
+ 2023-02-18 13:34:46,904 32k INFO [2.428616523742676, 2.5334784984588623, 7.50093936920166, 13.943485260009766, 1.0122454166412354, 600, 9.991253280566489e-05]
25
+ 2023-02-18 13:36:46,611 32k INFO ====> Epoch: 8
26
+ 2023-02-18 13:39:42,611 32k INFO ====> Epoch: 9
27
+ 2023-02-18 13:42:01,156 32k INFO Train Epoch: 10 [76%]
28
+ 2023-02-18 13:42:01,156 32k INFO [2.539777994155884, 1.9696028232574463, 10.870598793029785, 20.18303680419922, 1.0394906997680664, 800, 9.98875562335968e-05]
29
+ 2023-02-18 13:42:36,519 32k INFO ====> Epoch: 10
30
+ 2023-02-18 13:45:30,606 32k INFO ====> Epoch: 11
31
+ 2023-02-18 13:48:27,421 32k INFO ====> Epoch: 12
32
+ 2023-02-18 13:49:20,806 32k INFO Train Epoch: 13 [20%]
33
+ 2023-02-18 13:49:20,806 32k INFO [2.5772485733032227, 2.3823914527893066, 10.536639213562012, 20.34115219116211, 0.9894436597824097, 1000, 9.98501030820433e-05]
34
+ 2023-02-18 13:49:25,467 32k INFO Saving model and optimizer state at iteration 13 to ./logs\32k\G_1000.pth
35
+ 2023-02-18 13:49:42,627 32k INFO Saving model and optimizer state at iteration 13 to ./logs\32k\D_1000.pth
36
+ 2023-02-18 13:51:31,762 32k INFO ====> Epoch: 13
37
+ 2023-02-18 13:53:49,535 32k INFO ====> Epoch: 14
38
+ 2023-02-18 13:55:46,291 32k INFO Train Epoch: 15 [63%]
39
+ 2023-02-18 13:55:46,292 32k INFO [2.4663658142089844, 2.320800542831421, 11.314515113830566, 21.392370223999023, 1.4117159843444824, 1200, 9.982514211643064e-05]
40
+ 2023-02-18 13:56:38,705 32k INFO ====> Epoch: 15
41
+ 2023-02-18 13:59:28,519 32k INFO ====> Epoch: 16
42
+ 2023-02-18 14:02:17,766 32k INFO ====> Epoch: 17
43
+ 2023-02-18 14:02:53,341 32k INFO Train Epoch: 18 [7%]
44
+ 2023-02-18 14:02:53,341 32k INFO [2.418344736099243, 2.726172924041748, 12.386476516723633, 20.22224998474121, 1.1661674976348877, 1400, 9.978771236724554e-05]
45
+ 2023-02-18 14:04:58,741 32k INFO ====> Epoch: 18
46
+ 2023-02-18 14:07:40,854 32k INFO ====> Epoch: 19
47
+ 2023-02-18 14:09:22,959 32k INFO Train Epoch: 20 [51%]
48
+ 2023-02-18 14:09:22,959 32k INFO [2.392646551132202, 2.6650896072387695, 11.132346153259277, 20.615514755249023, 1.3077448606491089, 1600, 9.976276699833672e-05]
49
+ 2023-02-18 14:10:37,010 32k INFO ====> Epoch: 20
50
+ 2023-02-18 14:13:17,208 32k INFO ====> Epoch: 21
51
+ 2023-02-18 14:15:24,422 32k INFO Train Epoch: 22 [95%]
52
+ 2023-02-18 14:15:24,423 32k INFO [2.4040393829345703, 2.239150047302246, 12.231693267822266, 20.794464111328125, 0.9484589695930481, 1800, 9.973782786538036e-05]
53
+ 2023-02-18 14:15:30,868 32k INFO ====> Epoch: 22
54
+ 2023-02-18 14:17:59,875 32k INFO ====> Epoch: 23
55
+ 2023-02-18 14:20:20,355 32k INFO ====> Epoch: 24
56
+ 2023-02-18 14:21:30,802 32k INFO Train Epoch: 25 [39%]
57
+ 2023-02-18 14:21:30,802 32k INFO [2.4141862392425537, 2.3016927242279053, 13.739073753356934, 21.9274959564209, 1.2016680240631104, 2000, 9.970043085494672e-05]
58
+ 2023-02-18 14:21:35,541 32k INFO Saving model and optimizer state at iteration 25 to ./logs\32k\G_2000.pth
59
+ 2023-02-18 14:21:51,929 32k INFO Saving model and optimizer state at iteration 25 to ./logs\32k\D_2000.pth
60
+ 2023-02-18 14:23:05,507 32k INFO ====> Epoch: 25
61
+ 2023-02-18 14:25:24,529 32k INFO ====> Epoch: 26
62
+ 2023-02-18 14:27:25,212 32k INFO Train Epoch: 27 [83%]
63
+ 2023-02-18 14:27:25,212 32k INFO [2.485182285308838, 2.1557278633117676, 8.625478744506836, 17.08354377746582, 0.8900912404060364, 2200, 9.967550730505221e-05]
64
+ 2023-02-18 14:27:44,585 32k INFO ====> Epoch: 27
65
+ 2023-02-18 14:30:04,953 32k INFO ====> Epoch: 28
66
+ 2023-02-18 14:32:24,245 32k INFO ====> Epoch: 29
67
+ 2023-02-18 14:33:19,017 32k INFO Train Epoch: 30 [27%]
68
+ 2023-02-18 14:33:19,018 32k INFO [2.314979076385498, 2.591787099838257, 8.379956245422363, 17.788272857666016, 0.9263051152229309, 2400, 9.963813366190753e-05]
69
+ 2023-02-18 14:34:43,546 32k INFO ====> Epoch: 30
70
+ 2023-02-18 14:37:04,473 32k INFO ====> Epoch: 31
71
+ 2023-02-18 14:38:51,951 32k INFO Train Epoch: 32 [71%]
72
+ 2023-02-18 14:38:51,952 32k INFO [2.530869960784912, 2.346663475036621, 9.290014266967773, 17.95098114013672, 0.8468811511993408, 2600, 9.961322568533789e-05]
73
+ 2023-02-18 14:39:25,876 32k INFO ====> Epoch: 32
74
+ 2023-02-18 14:41:46,299 32k INFO ====> Epoch: 33
75
+ 2023-02-18 14:44:06,079 32k INFO ====> Epoch: 34
76
+ 2023-02-18 14:44:47,360 32k INFO Train Epoch: 35 [15%]
77
+ 2023-02-18 14:44:47,360 32k INFO [2.244014024734497, 2.303522825241089, 12.0291109085083, 20.503751754760742, 1.072399616241455, 2800, 9.957587539488128e-05]
78
+ 2023-02-18 14:46:28,086 32k INFO ====> Epoch: 35
79
+ 2023-02-18 14:48:49,406 32k INFO ====> Epoch: 36
80
+ 2023-02-18 14:50:21,699 32k INFO Train Epoch: 37 [59%]
81
+ 2023-02-18 14:50:21,700 32k INFO [2.5226240158081055, 2.235443115234375, 8.532631874084473, 17.06432342529297, 0.766471266746521, 3000, 9.95509829819056e-05]
82
+ 2023-02-18 14:50:26,448 32k INFO Saving model and optimizer state at iteration 37 to ./logs\32k\G_3000.pth
83
+ 2023-02-18 14:50:44,023 32k INFO Saving model and optimizer state at iteration 37 to ./logs\32k\D_3000.pth
84
+ 2023-02-18 14:51:35,085 32k INFO ====> Epoch: 37
85
+ 2023-02-18 14:53:54,527 32k INFO ====> Epoch: 38
86
+ 2023-02-18 14:56:14,690 32k INFO ====> Epoch: 39
87
+ 2023-02-18 14:56:41,714 32k INFO Train Epoch: 40 [2%]
88
+ 2023-02-18 14:56:41,715 32k INFO [2.545912027359009, 2.1446070671081543, 11.442967414855957, 19.688390731811523, 1.1071820259094238, 3200, 9.951365602954526e-05]
89
+ 2023-02-18 14:58:35,254 32k INFO ====> Epoch: 40
90
+ 2023-02-18 15:00:55,720 32k INFO ====> Epoch: 41
91
+ 2023-02-18 15:02:14,254 32k INFO Train Epoch: 42 [46%]
92
+ 2023-02-18 15:02:14,256 32k INFO [2.4656083583831787, 2.3087027072906494, 8.831151962280273, 20.15584373474121, 0.6311391592025757, 3400, 9.948877917043875e-05]
93
+ 2023-02-18 15:03:21,337 32k INFO ====> Epoch: 42
94
+ 2023-02-18 15:05:42,560 32k INFO ====> Epoch: 43
95
+ 2023-02-18 15:07:53,352 32k INFO Train Epoch: 44 [90%]
96
+ 2023-02-18 15:07:53,353 32k INFO [2.423257827758789, 2.4318912029266357, 8.438339233398438, 18.954322814941406, 1.1647067070007324, 3600, 9.94639085301583e-05]
97
+ 2023-02-18 15:08:03,537 32k INFO ====> Epoch: 44
98
+ 2023-02-18 15:10:23,855 32k INFO ====> Epoch: 45
99
+ 2023-02-18 15:12:44,427 32k INFO ====> Epoch: 46
100
+ 2023-02-18 15:13:48,785 32k INFO Train Epoch: 47 [34%]
101
+ 2023-02-18 15:13:48,786 32k INFO [2.1796677112579346, 2.7173850536346436, 11.570164680480957, 17.406679153442383, 1.1616911888122559, 3800, 9.942661422663591e-05]
102
+ 2023-02-18 15:15:05,864 32k INFO ====> Epoch: 47
103
+ 2023-02-18 15:17:26,837 32k INFO ====> Epoch: 48
104
+ 2023-02-18 15:19:22,655 32k INFO Train Epoch: 49 [78%]
105
+ 2023-02-18 15:19:22,656 32k INFO [2.7236239910125732, 2.036970376968384, 4.593118667602539, 7.638784408569336, 1.1607017517089844, 4000, 9.940175912662009e-05]
106
+ 2023-02-18 15:19:27,513 32k INFO Saving model and optimizer state at iteration 49 to ./logs\32k\G_4000.pth
107
+ 2023-02-18 15:19:45,391 32k INFO Saving model and optimizer state at iteration 49 to ./logs\32k\D_4000.pth
108
+ 2023-02-18 15:20:13,800 32k INFO ====> Epoch: 49
109
+ 2023-02-18 15:22:33,780 32k INFO ====> Epoch: 50
110
+ 2023-02-18 15:24:53,853 32k INFO ====> Epoch: 51
111
+ 2023-02-18 15:25:43,949 32k INFO Train Epoch: 52 [22%]
112
+ 2023-02-18 15:25:43,949 32k INFO [2.6045544147491455, 2.4030346870422363, 10.298624992370605, 17.781221389770508, 0.9256278276443481, 4200, 9.936448812621091e-05]
113
+ 2023-02-18 15:27:14,911 32k INFO ====> Epoch: 52
114
+ 2023-02-18 15:29:35,372 32k INFO ====> Epoch: 53
115
+ 2023-02-18 15:31:16,948 32k INFO Train Epoch: 54 [66%]
116
+ 2023-02-18 15:31:16,948 32k INFO [2.4962995052337646, 2.134711503982544, 9.151311874389648, 16.35634422302246, 0.862859308719635, 4400, 9.933964855674948e-05]
117
+ 2023-02-18 15:31:56,360 32k INFO ====> Epoch: 54
118
+ 2023-02-18 15:34:16,854 32k INFO ====> Epoch: 55
119
+ 2023-02-18 15:36:36,402 32k INFO ====> Epoch: 56
120
+ 2023-02-18 15:37:12,111 32k INFO Train Epoch: 57 [10%]
121
+ 2023-02-18 15:37:12,122 32k INFO [2.2373344898223877, 2.4235143661499023, 11.974388122558594, 18.775772094726562, 0.9912294745445251, 4600, 9.930240084489267e-05]
122
+ 2023-02-18 15:38:57,440 32k INFO ====> Epoch: 57
123
+ 2023-02-18 15:41:17,548 32k INFO ====> Epoch: 58
124
+ 2023-02-18 15:42:44,716 32k INFO Train Epoch: 59 [54%]
125
+ 2023-02-18 15:42:44,716 32k INFO [2.32612943649292, 2.505492687225342, 13.369050025939941, 21.683101654052734, 1.2278294563293457, 4800, 9.927757679628145e-05]
126
+ 2023-02-18 15:43:38,469 32k INFO ====> Epoch: 59
127
+ 2023-02-18 15:45:59,553 32k INFO ====> Epoch: 60
128
+ 2023-02-18 15:48:18,553 32k INFO Train Epoch: 61 [98%]
129
+ 2023-02-18 15:48:18,554 32k INFO [2.332657814025879, 2.309508800506592, 11.992413520812988, 21.970182418823242, 1.1714390516281128, 5000, 9.92527589532945e-05]
130
+ 2023-02-18 15:48:23,341 32k INFO Saving model and optimizer state at iteration 61 to ./logs\32k\G_5000.pth
131
+ 2023-02-18 15:48:41,872 32k INFO Saving model and optimizer state at iteration 61 to ./logs\32k\D_5000.pth
132
+ 2023-02-18 15:48:47,201 32k INFO ====> Epoch: 61
133
+ 2023-02-18 15:51:06,990 32k INFO ====> Epoch: 62
134
+ 2023-02-18 15:53:26,772 32k INFO ====> Epoch: 63
135
+ 2023-02-18 15:54:39,947 32k INFO Train Epoch: 64 [41%]
136
+ 2023-02-18 15:54:39,947 32k INFO [2.581521987915039, 2.197911500930786, 10.526808738708496, 18.230852127075195, 0.5856090784072876, 5200, 9.921554382096622e-05]
137
+ 2023-02-18 15:56:05,134 32k INFO ====> Epoch: 64
138
+ 2023-02-18 15:59:16,071 32k INFO ====> Epoch: 65
139
+ 2023-02-18 16:02:00,609 32k INFO Train Epoch: 66 [85%]
140
+ 2023-02-18 16:02:00,610 32k INFO [2.4432015419006348, 2.4601447582244873, 11.853116989135742, 20.211322784423828, 0.9781383872032166, 5400, 9.919074148525384e-05]
141
+ 2023-02-18 16:02:23,489 32k INFO ====> Epoch: 66
142
+ 2023-02-18 16:05:35,609 32k INFO ====> Epoch: 67
143
+ 2023-02-18 16:08:44,666 32k INFO ====> Epoch: 68
144
+ 2023-02-18 16:09:56,545 32k INFO Train Epoch: 69 [29%]
145
+ 2023-02-18 16:09:56,546 32k INFO [2.181422233581543, 2.8529210090637207, 11.916988372802734, 21.838470458984375, 1.0593645572662354, 5600, 9.915354960656915e-05]
146
+ 2023-02-18 16:11:49,999 32k INFO ====> Epoch: 69
147
+ 2023-02-18 16:14:57,604 32k INFO ====> Epoch: 70
148
+ 2023-02-18 16:17:27,420 32k INFO Train Epoch: 71 [73%]
149
+ 2023-02-18 16:17:27,420 32k INFO [1.9035147428512573, 3.021906852722168, 15.565659523010254, 21.79709815979004, 0.946706235408783, 5800, 9.912876276844171e-05]
150
+ 2023-02-18 16:18:11,589 32k INFO ====> Epoch: 71
151
+ 2023-02-18 16:21:19,944 32k INFO ====> Epoch: 72
152
+ 2023-02-18 16:24:31,441 32k INFO ====> Epoch: 73
153
+ 2023-02-18 16:25:23,054 32k INFO Train Epoch: 74 [17%]
154
+ 2023-02-18 16:25:23,054 32k INFO [2.3623337745666504, 2.5799450874328613, 7.930063247680664, 17.0313777923584, 1.2069950103759766, 6000, 9.909159412887068e-05]
155
+ 2023-02-18 16:25:27,842 32k INFO Saving model and optimizer state at iteration 74 to ./logs\32k\G_6000.pth
156
+ 2023-02-18 16:25:48,638 32k INFO Saving model and optimizer state at iteration 74 to ./logs\32k\D_6000.pth
157
+ 2023-02-18 16:28:07,473 32k INFO ====> Epoch: 74
158
+ 2023-02-18 16:31:15,829 32k INFO ====> Epoch: 75
159
+ 2023-02-18 16:33:18,999 32k INFO Train Epoch: 76 [61%]
160
+ 2023-02-18 16:33:18,999 32k INFO [2.2943310737609863, 2.8715434074401855, 10.26145076751709, 14.741254806518555, 1.2504029273986816, 6200, 9.906682277864462e-05]
161
+ 2023-02-18 16:34:18,996 32k INFO ====> Epoch: 76
162
+ 2023-02-18 16:37:25,713 32k INFO ====> Epoch: 77
163
+ 2023-02-18 16:40:29,196 32k INFO ====> Epoch: 78
164
+ 2023-02-18 16:41:01,456 32k INFO Train Epoch: 79 [5%]
165
+ 2023-02-18 16:41:01,457 32k INFO [2.1732935905456543, 2.650221347808838, 16.90458869934082, 23.275943756103516, 0.5908531546592712, 6400, 9.902967736366644e-05]
166
+ 2023-02-18 16:43:35,665 32k INFO ====> Epoch: 79
167
+ 2023-02-18 16:46:40,281 32k INFO ====> Epoch: 80
168
+ 2023-02-18 16:48:24,511 32k INFO Train Epoch: 81 [49%]
169
+ 2023-02-18 16:48:24,511 32k INFO [2.488065719604492, 2.189055919647217, 11.57202434539795, 20.690433502197266, 1.0104312896728516, 6600, 9.900492149166423e-05]
170
+ 2023-02-18 16:49:45,682 32k INFO ====> Epoch: 81
171
+ 2023-02-18 16:52:48,841 32k INFO ====> Epoch: 82
172
+ 2023-02-18 16:55:45,194 32k INFO Train Epoch: 83 [93%]
173
+ 2023-02-18 16:55:45,195 32k INFO [2.363006591796875, 2.5977485179901123, 11.85480785369873, 20.72893714904785, 1.1449049711227417, 6800, 9.89801718082432e-05]
174
+ 2023-02-18 16:55:54,936 32k INFO ====> Epoch: 83
175
+ 2023-02-18 16:59:01,228 32k INFO ====> Epoch: 84
176
+ 2023-02-18 17:02:06,730 32k INFO ====> Epoch: 85
177
+ 2023-02-18 17:03:30,501 32k INFO Train Epoch: 86 [37%]
178
+ 2023-02-18 17:03:30,502 32k INFO [2.6049516201019287, 2.1475470066070557, 8.085922241210938, 17.217309951782227, 0.45161640644073486, 7000, 9.894305888331732e-05]
179
+ 2023-02-18 17:03:35,389 32k INFO Saving model and optimizer state at iteration 86 to ./logs\32k\G_7000.pth
180
+ 2023-02-18 17:03:53,165 32k INFO Saving model and optimizer state at iteration 86 to ./logs\32k\D_7000.pth
181
+ 2023-02-18 17:05:34,400 32k INFO ====> Epoch: 86
182
+ 2023-02-18 17:08:41,181 32k INFO ====> Epoch: 87
183
+ 2023-02-18 17:11:16,739 32k INFO Train Epoch: 88 [80%]
184
+ 2023-02-18 17:11:16,739 32k INFO [2.382134199142456, 2.5343871116638184, 9.086328506469727, 14.694384574890137, 0.7267480492591858, 7200, 9.891832466458178e-05]
185
+ 2023-02-18 17:11:47,110 32k INFO ====> Epoch: 88
186
+ 2023-02-18 17:14:52,007 32k INFO ====> Epoch: 89
187
+ 2023-02-18 17:17:56,142 32k INFO ====> Epoch: 90
188
+ 2023-02-18 17:19:01,057 32k INFO Train Epoch: 91 [24%]
189
+ 2023-02-18 17:19:01,058 32k INFO [2.4476230144500732, 2.305821418762207, 8.499305725097656, 19.25327491760254, 0.8112967610359192, 7400, 9.888123492943583e-05]
190
+ 2023-02-18 17:21:03,549 32k INFO ====> Epoch: 91
191
+ 2023-02-18 17:24:06,841 32k INFO ====> Epoch: 92
192
+ 2023-02-18 17:26:22,681 32k INFO Train Epoch: 93 [68%]
193
+ 2023-02-18 17:26:22,688 32k INFO [2.185331344604492, 2.6872944831848145, 15.124022483825684, 21.444419860839844, 1.0479180812835693, 7600, 9.885651616572276e-05]
194
+ 2023-02-18 17:27:13,773 32k INFO ====> Epoch: 93
195
+ 2023-02-18 17:30:21,451 32k INFO ====> Epoch: 94
196
+ 2023-02-18 17:33:29,561 32k INFO ====> Epoch: 95
197
+ 2023-02-18 17:34:13,186 32k INFO Train Epoch: 96 [12%]
198
+ 2023-02-18 17:34:13,187 32k INFO [2.347987174987793, 2.395303964614868, 9.463523864746094, 14.174880981445312, 0.40106111764907837, 7800, 9.881944960586671e-05]
199
+ 2023-02-18 17:36:35,656 32k INFO ====> Epoch: 96
200
+ 2023-02-18 17:39:42,149 32k INFO ====> Epoch: 97
201
+ 2023-02-18 17:41:37,677 32k INFO Train Epoch: 98 [56%]
202
+ 2023-02-18 17:41:37,677 32k INFO [2.503045082092285, 2.4578006267547607, 11.118446350097656, 18.708005905151367, 1.2328639030456543, 8000, 9.879474628751914e-05]
203
+ 2023-02-18 17:41:42,468 32k INFO Saving model and optimizer state at iteration 98 to ./logs\32k\G_8000.pth
204
+ 2023-02-18 17:41:59,137 32k INFO Saving model and optimizer state at iteration 98 to ./logs\32k\D_8000.pth
205
+ 2023-02-18 17:43:11,648 32k INFO ====> Epoch: 98
206
+ 2023-02-18 17:46:14,721 32k INFO ====> Epoch: 99
207
+ 2023-02-18 17:49:19,452 32k INFO ====> Epoch: 100
208
+ 2023-02-18 17:49:43,660 32k INFO Train Epoch: 101 [0%]
209
+ 2023-02-18 17:49:43,660 32k INFO [2.5995795726776123, 2.3254148960113525, 7.9163641929626465, 16.673885345458984, 0.7785255908966064, 8200, 9.875770288847208e-05]
210
+ 2023-02-18 17:52:24,475 32k INFO ====> Epoch: 101
211
+ 2023-02-18 17:55:27,166 32k INFO ====> Epoch: 102
212
+ 2023-02-18 17:57:03,042 32k INFO Train Epoch: 103 [44%]
213
+ 2023-02-18 17:57:03,042 32k INFO [2.415909767150879, 2.438415288925171, 10.601877212524414, 19.733566284179688, 0.9555046558380127, 8400, 9.873301500583906e-05]
214
+ 2023-02-18 17:58:33,665 32k INFO ====> Epoch: 103
215
+ 2023-02-18 18:01:38,657 32k INFO ====> Epoch: 104
216
+ 2023-02-18 18:04:28,117 32k INFO Train Epoch: 105 [88%]
217
+ 2023-02-18 18:04:28,117 32k INFO [2.630995035171509, 2.1970698833465576, 10.794513702392578, 19.191852569580078, 0.7746363878250122, 8600, 9.870833329479095e-05]
218
+ 2023-02-18 18:04:45,705 32k INFO ====> Epoch: 105
219
+ 2023-02-18 18:07:52,602 32k INFO ====> Epoch: 106
220
+ 2023-02-18 18:10:57,947 32k INFO ====> Epoch: 107
221
+ 2023-02-18 18:12:12,513 32k INFO Train Epoch: 108 [32%]
222
+ 2023-02-18 18:12:12,513 32k INFO [2.474118709564209, 2.5281760692596436, 7.3929548263549805, 14.464062690734863, 0.6939061880111694, 8800, 9.867132229656573e-05]
223
+ 2023-02-18 18:14:00,834 32k INFO ====> Epoch: 108
224
+ 2023-02-18 18:17:07,249 32k INFO ====> Epoch: 109
225
+ 2023-02-18 18:19:34,317 32k INFO Train Epoch: 110 [76%]
226
+ 2023-02-18 18:19:34,318 32k INFO [2.6343023777008057, 2.198140859603882, 9.245353698730469, 15.40959644317627, 0.5494029521942139, 9000, 9.864665600773098e-05]
227
+ 2023-02-18 18:19:39,249 32k INFO Saving model and optimizer state at iteration 110 to ./logs\32k\G_9000.pth
228
+ 2023-02-18 18:19:56,382 32k INFO Saving model and optimizer state at iteration 110 to ./logs\32k\D_9000.pth
229
+ 2023-02-18 18:20:37,170 32k INFO ====> Epoch: 110
230
+ 2023-02-18 18:23:43,211 32k INFO ====> Epoch: 111
231
+ 2023-02-18 18:26:56,368 32k INFO ====> Epoch: 112
232
+ 2023-02-18 18:27:52,671 32k INFO Train Epoch: 113 [20%]
233
+ 2023-02-18 18:27:52,672 32k INFO [2.1823391914367676, 2.942514419555664, 12.15264892578125, 19.10240364074707, 0.7193117141723633, 9200, 9.86096681355974e-05]
234
+ 2023-02-18 18:30:11,006 32k INFO ====> Epoch: 113
235
+ 2023-02-18 18:33:21,420 32k INFO ====> Epoch: 114
236
+ 2023-02-18 18:35:32,306 32k INFO Train Epoch: 115 [63%]
237
+ 2023-02-18 18:35:32,306 32k INFO [2.3463950157165527, 2.4623875617980957, 13.173855781555176, 21.46563148498535, 0.5739250183105469, 9400, 9.858501725933955e-05]
238
+ 2023-02-18 18:36:30,806 32k INFO ====> Epoch: 115
239
+ 2023-02-18 18:39:41,614 32k INFO ====> Epoch: 116
240
+ 2023-02-18 18:42:56,740 32k INFO ====> Epoch: 117
241
+ 2023-02-18 18:43:32,935 32k INFO Train Epoch: 118 [7%]
242
+ 2023-02-18 18:43:32,936 32k INFO [2.4906504154205322, 2.447946786880493, 11.754008293151855, 20.466285705566406, 0.8161544799804688, 9600, 9.854805249884741e-05]
243
+ 2023-02-18 18:46:10,002 32k INFO ====> Epoch: 118
244
+ 2023-02-18 18:49:20,693 32k INFO ====> Epoch: 119
245
+ 2023-02-18 18:51:10,250 32k INFO Train Epoch: 120 [51%]
246
+ 2023-02-18 18:51:10,251 32k INFO [2.4490957260131836, 2.738856077194214, 12.3360013961792, 19.310625076293945, 0.8394557237625122, 9800, 9.8523417025536e-05]
247
+ 2023-02-18 18:52:29,403 32k INFO ====> Epoch: 120
248
+ 2023-02-18 18:55:31,737 32k INFO ====> Epoch: 121
249
+ 2023-02-18 18:58:27,659 32k INFO Train Epoch: 122 [95%]
250
+ 2023-02-18 18:58:27,660 32k INFO [2.409554958343506, 2.3621697425842285, 13.538979530334473, 20.507600784301758, 1.1963660717010498, 10000, 9.8498787710708e-05]
251
+ 2023-02-18 18:58:32,617 32k INFO Saving model and optimizer state at iteration 122 to ./logs\32k\G_10000.pth
252
+ 2023-02-18 18:58:50,163 32k INFO Saving model and optimizer state at iteration 122 to ./logs\32k\D_10000.pth
253
+ 2023-02-18 18:58:59,800 32k INFO ====> Epoch: 122
254
+ 2023-02-18 19:02:03,872 32k INFO ====> Epoch: 123
255
+ 2023-02-18 19:05:06,686 32k INFO ====> Epoch: 124
256
+ 2023-02-18 19:06:34,823 32k INFO Train Epoch: 125 [39%]
257
+ 2023-02-18 19:06:34,824 32k INFO [2.345095634460449, 2.178450345993042, 12.377983093261719, 19.660619735717773, 0.8193285465240479, 10200, 9.846185528225477e-05]
258
+ 2023-02-18 19:08:12,812 32k INFO ====> Epoch: 125
259
+ 2023-02-18 19:11:15,775 32k INFO ====> Epoch: 126
260
+ 2023-02-18 19:13:54,645 32k INFO Train Epoch: 127 [83%]
261
+ 2023-02-18 19:13:54,645 32k INFO [2.5806427001953125, 2.1979994773864746, 11.834625244140625, 18.687227249145508, 1.0435174703598022, 10400, 9.84372413569007e-05]
262
+ 2023-02-18 19:14:19,451 32k INFO ====> Epoch: 127
263
+ 2023-02-18 19:17:26,036 32k INFO ====> Epoch: 128
264
+ 2023-02-18 19:20:29,081 32k INFO ====> Epoch: 129
265
+ 2023-02-18 19:21:35,465 32k INFO Train Epoch: 130 [27%]
266
+ 2023-02-18 19:21:35,466 32k INFO [2.351133346557617, 2.378753423690796, 10.939573287963867, 19.32187271118164, 0.8272395730018616, 10600, 9.840033200544528e-05]
267
+ 2023-02-18 19:23:33,960 32k INFO ====> Epoch: 130
268
+ 2023-02-18 19:26:38,810 32k INFO ====> Epoch: 131
269
+ 2023-02-18 19:28:57,008 32k INFO Train Epoch: 132 [71%]
270
+ 2023-02-18 19:28:57,048 32k INFO [2.4666779041290283, 2.4331767559051514, 12.116047859191895, 20.228519439697266, 1.3147556781768799, 10800, 9.837573345994909e-05]
271
+ 2023-02-18 19:29:43,726 32k INFO ====> Epoch: 132
272
+ 2023-02-18 19:32:50,848 32k INFO ====> Epoch: 133
273
+ 2023-02-18 19:35:56,257 32k INFO ====> Epoch: 134
274
+ 2023-02-18 19:36:44,716 32k INFO Train Epoch: 135 [15%]
275
+ 2023-02-18 19:36:44,716 32k INFO [2.255558490753174, 2.5198585987091064, 12.21342945098877, 20.34984588623047, 1.0012221336364746, 11000, 9.833884717107196e-05]
276
+ 2023-02-18 19:36:49,985 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\G_11000.pth
277
+ 2023-02-18 19:37:07,494 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\D_11000.pth
278
+ 2023-02-18 19:39:27,828 32k INFO ====> Epoch: 135
279
+ 2023-02-18 19:42:33,821 32k INFO ====> Epoch: 136
280
+ 2023-02-18 19:44:35,721 32k INFO Train Epoch: 137 [59%]
281
+ 2023-02-18 19:44:35,721 32k INFO [2.6769304275512695, 2.0602264404296875, 9.101190567016602, 14.852888107299805, 0.7094751000404358, 11200, 9.831426399582366e-05]
282
+ 2023-02-18 19:45:41,712 32k INFO ====> Epoch: 137
283
+ 2023-02-18 19:48:48,842 32k INFO ====> Epoch: 138
284
+ 2023-02-18 19:51:55,030 32k INFO ====> Epoch: 139
285
+ 2023-02-18 19:52:23,208 32k INFO Train Epoch: 140 [2%]
286
+ 2023-02-18 19:52:23,208 32k INFO [2.416285753250122, 2.515517234802246, 11.539551734924316, 18.85158348083496, 0.7964726090431213, 11400, 9.827740075511432e-05]
287
+ 2023-02-18 19:55:00,407 32k INFO ====> Epoch: 140
288
+ 2023-02-18 19:58:07,313 32k INFO ====> Epoch: 141
289
+ 2023-02-18 19:59:48,759 32k INFO Train Epoch: 142 [46%]
290
+ 2023-02-18 19:59:48,759 32k INFO [2.6437501907348633, 2.2807607650756836, 7.438623428344727, 16.5651798248291, 0.5293334126472473, 11600, 9.825283294050992e-05]
291
+ 2023-02-18 20:01:13,320 32k INFO ====> Epoch: 142
292
+ 2023-02-18 20:04:19,009 32k INFO ====> Epoch: 143
293
+ 2023-02-18 20:07:08,623 32k INFO Train Epoch: 144 [90%]
294
+ 2023-02-18 20:07:08,623 32k INFO [2.4082539081573486, 2.348365306854248, 13.17957878112793, 20.185009002685547, 1.1610592603683472, 11800, 9.822827126747529e-05]
295
+ 2023-02-18 20:07:22,174 32k INFO ====> Epoch: 144
296
+ 2023-02-18 20:10:24,073 32k INFO ====> Epoch: 145
297
+ 2023-02-18 20:13:29,961 32k INFO ====> Epoch: 146
298
+ 2023-02-18 20:14:49,654 32k INFO Train Epoch: 147 [34%]
299
+ 2023-02-18 20:14:49,655 32k INFO [2.6301674842834473, 2.0582547187805176, 7.999320983886719, 13.03806209564209, 0.6115504503250122, 12000, 9.819144027000834e-05]
300
+ 2023-02-18 20:14:54,379 32k INFO Saving model and optimizer state at iteration 147 to ./logs\32k\G_12000.pth
301
+ 2023-02-18 20:15:13,472 32k INFO Saving model and optimizer state at iteration 147 to ./logs\32k\D_12000.pth
302
+ 2023-02-18 20:16:32,707 32k INFO ====> Epoch: 147
303
+ 2023-02-18 20:18:51,573 32k INFO ====> Epoch: 148
304
+ 2023-02-18 20:20:45,616 32k INFO Train Epoch: 149 [78%]
305
+ 2023-02-18 20:20:45,616 32k INFO [2.5716872215270996, 2.044759511947632, 7.352247714996338, 11.54852294921875, 0.6284887790679932, 12200, 9.816689394418209e-05]
306
+ 2023-02-18 20:21:09,668 32k INFO ====> Epoch: 149
307
+ 2023-02-18 20:23:28,296 32k INFO ====> Epoch: 150
308
+ 2023-02-18 20:25:46,478 32k INFO ====> Epoch: 151
309
+ 2023-02-18 20:26:35,115 32k INFO Train Epoch: 152 [22%]
310
+ 2023-02-18 20:26:35,116 32k INFO [2.7496554851531982, 2.115495443344116, 8.033178329467773, 17.09941864013672, 0.5979650020599365, 12400, 9.813008596033443e-05]
311
+ 2023-02-18 20:28:04,631 32k INFO ====> Epoch: 152
312
+ 2023-02-18 20:30:22,610 32k INFO ====> Epoch: 153
313
+ 2023-02-18 20:32:02,056 32k INFO Train Epoch: 154 [66%]
314
+ 2023-02-18 20:32:02,057 32k INFO [2.5520501136779785, 2.038939952850342, 9.094746589660645, 17.24423599243164, 0.9727638959884644, 12600, 9.810555497212693e-05]
315
+ 2023-02-18 20:32:40,442 32k INFO ====> Epoch: 154
316
+ 2023-02-18 20:34:58,936 32k INFO ====> Epoch: 155
317
+ 2023-02-18 20:37:23,270 32k INFO ====> Epoch: 156
318
+ 2023-02-18 20:37:58,290 32k INFO Train Epoch: 157 [10%]
319
+ 2023-02-18 20:37:58,290 32k INFO [2.4157652854919434, 2.302234411239624, 9.094962120056152, 15.25003433227539, 0.7912210822105408, 12800, 9.806876998751865e-05]
320
+ 2023-02-18 20:39:42,082 32k INFO ====> Epoch: 157
321
+ 2023-02-18 20:42:09,378 32k INFO ====> Epoch: 158
322
+ 2023-02-18 20:43:36,431 32k INFO Train Epoch: 159 [54%]
323
+ 2023-02-18 20:43:36,431 32k INFO [2.303689956665039, 2.5022518634796143, 12.047871589660645, 18.625017166137695, 0.8808897733688354, 13000, 9.804425432734629e-05]
324
+ 2023-02-18 20:43:40,953 32k INFO Saving model and optimizer state at iteration 159 to ./logs\32k\G_13000.pth
325
+ 2023-02-18 20:43:58,356 32k INFO Saving model and optimizer state at iteration 159 to ./logs\32k\D_13000.pth
326
+ 2023-02-18 20:44:54,917 32k INFO ====> Epoch: 159
327
+ 2023-02-18 20:47:14,493 32k INFO ====> Epoch: 160
328
+ 2023-02-18 20:49:30,972 32k INFO Train Epoch: 161 [98%]
329
+ 2023-02-18 20:49:30,973 32k INFO [2.311939001083374, 2.59867000579834, 12.213456153869629, 19.764371871948242, 0.9899132251739502, 13200, 9.801974479570593e-05]
330
+ 2023-02-18 20:49:32,766 32k INFO ====> Epoch: 161
331
+ 2023-02-18 20:51:59,478 32k INFO ====> Epoch: 162
332
+ 2023-02-18 20:55:31,794 32k INFO ====> Epoch: 163
333
+ 2023-02-18 20:57:30,010 32k INFO Train Epoch: 164 [41%]
334
+ 2023-02-18 20:57:30,010 32k INFO [2.86376690864563, 1.865500807762146, 5.887643814086914, 11.784518241882324, 1.020143747329712, 13400, 9.798299198589162e-05]
335
+ 2023-02-18 20:59:20,512 32k INFO ====> Epoch: 164
336
+ 2023-02-18 21:03:06,854 32k INFO ====> Epoch: 165
337
+ 2023-02-18 21:06:30,117 32k INFO Train Epoch: 166 [85%]
338
+ 2023-02-18 21:06:30,117 32k INFO [2.325920343399048, 2.6557977199554443, 11.842923164367676, 20.726858139038086, 0.6900365352630615, 13600, 9.795849776887939e-05]
339
+ 2023-02-18 21:06:56,246 32k INFO ====> Epoch: 166
340
+ 2023-02-18 21:10:48,496 32k INFO ====> Epoch: 167
341
+ 2023-02-18 21:14:47,570 32k INFO ====> Epoch: 168
342
+ 2023-02-18 21:16:21,507 32k INFO Train Epoch: 169 [29%]
343
+ 2023-02-18 21:16:21,507 32k INFO [2.5149126052856445, 2.531891345977783, 10.036737442016602, 18.885982513427734, 0.8873259425163269, 13800, 9.792176792382932e-05]
344
+ 2023-02-18 21:18:35,252 32k INFO ====> Epoch: 169
345
+ 2023-02-18 21:22:06,753 32k INFO ====> Epoch: 170
346
+ 2023-02-18 21:24:54,047 32k INFO Train Epoch: 171 [73%]
347
+ 2023-02-18 21:24:54,048 32k INFO [2.2129878997802734, 2.324878215789795, 15.463290214538574, 19.30773162841797, 0.8498368263244629, 14000, 9.789728901187598e-05]
348
+ 2023-02-18 21:25:03,662 32k INFO Saving model and optimizer state at iteration 171 to ./logs\32k\G_14000.pth
349
+ 2023-02-18 21:25:43,764 32k INFO Saving model and optimizer state at iteration 171 to ./logs\32k\D_14000.pth
350
+ 2023-02-18 21:26:48,302 32k INFO ====> Epoch: 171
351
+ 2023-02-18 21:30:19,052 32k INFO ====> Epoch: 172
352
+ 2023-02-18 21:33:46,770 32k INFO ====> Epoch: 173
353
+ 2023-02-18 21:34:50,019 32k INFO Train Epoch: 174 [17%]
354
+ 2023-02-18 21:34:50,019 32k INFO [2.4638266563415527, 2.162075996398926, 9.001068115234375, 17.737350463867188, 0.4494396448135376, 14200, 9.786058211724074e-05]
355
+ 2023-02-18 21:37:15,289 32k INFO ====> Epoch: 174
356
+ 2023-02-18 21:40:41,023 32k INFO ====> Epoch: 175
357
+ 2023-02-18 21:43:06,569 32k INFO Train Epoch: 176 [61%]
358
+ 2023-02-18 21:43:06,570 32k INFO [2.4940695762634277, 2.29329514503479, 9.759041786193848, 15.883288383483887, 0.6593114137649536, 14400, 9.783611850078301e-05]
359
+ 2023-02-18 21:44:18,062 32k INFO ====> Epoch: 176
360
+ 2023-02-18 21:47:51,907 32k INFO ====> Epoch: 177
361
+ 2023-02-18 21:51:42,031 32k INFO ====> Epoch: 178
362
+ 2023-02-18 21:52:30,304 32k INFO Train Epoch: 179 [5%]
363
+ 2023-02-18 21:52:30,305 32k INFO [2.24495267868042, 2.5450713634490967, 16.089956283569336, 20.423744201660156, 1.29641854763031, 14600, 9.779943454222217e-05]
364
+ 2023-02-18 21:55:35,640 32k INFO ====> Epoch: 179
365
+ 2023-02-18 21:58:29,482 32k INFO ====> Epoch: 180
366
+ 2023-02-18 22:00:10,005 32k INFO Train Epoch: 181 [49%]
367
+ 2023-02-18 22:00:10,005 32k INFO [2.0902342796325684, 2.3228907585144043, 15.107324600219727, 20.69207763671875, 0.6706202030181885, 14800, 9.777498621170277e-05]
368
+ 2023-02-18 22:01:19,615 32k INFO ====> Epoch: 181
369
+ 2023-02-18 22:04:08,136 32k INFO ====> Epoch: 182
370
+ 2023-02-18 22:06:51,660 32k INFO Train Epoch: 183 [93%]
371
+ 2023-02-18 22:06:51,662 32k INFO [2.6548900604248047, 2.4761009216308594, 8.531192779541016, 13.265990257263184, 0.7215445637702942, 15000, 9.7750543992884e-05]
372
+ 2023-02-18 22:07:00,968 32k INFO Saving model and optimizer state at iteration 183 to ./logs\32k\G_15000.pth
373
+ 2023-02-18 22:07:34,821 32k INFO Saving model and optimizer state at iteration 183 to ./logs\32k\D_15000.pth
374
+ 2023-02-18 22:07:54,739 32k INFO ====> Epoch: 183
375
+ 2023-02-18 22:10:44,685 32k INFO ====> Epoch: 184
32k-hiyo/D_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07b6c52bbc086d75c1d080b6b4d566427f9bc8c38b80769e188dcb90bd0c82a0
3
+ size 561098185
32k-hiyo/D_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e6743fd8e9a9deb1edeecc416d7bf3de8bed87700f365f9a3d6756abd590db
3
+ size 561098185
32k-hiyo/G_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13858c1c898774366f883a0e08b6c615cd107e37f80d12a582f95fc03dce1c43
3
+ size 699505437
32k-hiyo/G_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afbe974d585f67e3b0482c90b9c5abd42b79005ce31b610bfe39064e64936f00
3
+ size 699505437
32k-hiyo/config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 17920,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 384,
23
+ "port": "8001"
24
+ },
25
+ "data": {
26
+ "training_files": "filelists/train.txt",
27
+ "validation_files": "filelists/val.txt",
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 32000,
30
+ "filter_length": 1280,
31
+ "hop_length": 320,
32
+ "win_length": 1280,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null
36
+ },
37
+ "model": {
38
+ "inter_channels": 192,
39
+ "hidden_channels": 192,
40
+ "filter_channels": 768,
41
+ "n_heads": 2,
42
+ "n_layers": 6,
43
+ "kernel_size": 3,
44
+ "p_dropout": 0.1,
45
+ "resblock": "1",
46
+ "resblock_kernel_sizes": [
47
+ 3,
48
+ 7,
49
+ 11
50
+ ],
51
+ "resblock_dilation_sizes": [
52
+ [
53
+ 1,
54
+ 3,
55
+ 5
56
+ ],
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ]
67
+ ],
68
+ "upsample_rates": [
69
+ 10,
70
+ 8,
71
+ 2,
72
+ 2
73
+ ],
74
+ "upsample_initial_channel": 512,
75
+ "upsample_kernel_sizes": [
76
+ 16,
77
+ 16,
78
+ 4,
79
+ 4
80
+ ],
81
+ "n_layers_q": 3,
82
+ "use_spectral_norm": false,
83
+ "gin_channels": 256,
84
+ "ssl_dim": 256,
85
+ "n_speakers": 2
86
+ },
87
+ "spk": {
88
+ "hiyo": 0
89
+ }
90
+ }
32k-hiyo/eval/events.out.tfevents.1676340776.DESKTOP-P582Q00.21940.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1754ba29492978a4370e854f2926a410478d586bfafb542d120fa5dcfc7e7dad
3
+ size 19909795
32k-hiyo/train.log ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-02-14 13:12:41,308 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'hiyo': 0}, 'model_dir': './logs\\32k'}
2
+ 2023-02-14 13:12:58,959 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
3
+ 2023-02-14 13:12:59,334 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
4
+ 2023-02-14 13:13:25,423 32k INFO Train Epoch: 1 [0%]
5
+ 2023-02-14 13:13:25,424 32k INFO [2.7184720039367676, 2.6034836769104004, 11.849114418029785, 47.374595642089844, 9.48661994934082, 0, 0.0001]
6
+ 2023-02-14 13:13:30,918 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
7
+ 2023-02-14 13:13:47,803 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
8
+ 2023-02-14 13:15:02,651 32k INFO ====> Epoch: 1
9
+ 2023-02-14 13:16:34,036 32k INFO ====> Epoch: 2
10
+ 2023-02-14 13:17:26,475 32k INFO Train Epoch: 3 [44%]
11
+ 2023-02-14 13:17:26,475 32k INFO [2.6585214138031006, 2.366513252258301, 10.955318450927734, 23.930110931396484, 1.0435259342193604, 200, 9.99750015625e-05]
12
+ 2023-02-14 13:18:05,652 32k INFO ====> Epoch: 3
13
+ 2023-02-14 13:19:36,775 32k INFO ====> Epoch: 4
14
+ 2023-02-14 13:20:59,955 32k INFO Train Epoch: 5 [88%]
15
+ 2023-02-14 13:20:59,955 32k INFO [2.501133441925049, 2.350158452987671, 9.644698143005371, 22.92068862915039, 0.7671791315078735, 400, 9.995000937421877e-05]
16
+ 2023-02-14 13:21:08,211 32k INFO ====> Epoch: 5
17
+ 2023-02-14 13:22:39,553 32k INFO ====> Epoch: 6
18
+ 2023-02-14 13:24:10,878 32k INFO ====> Epoch: 7
19
+ 2023-02-14 13:24:54,687 32k INFO Train Epoch: 8 [32%]
20
+ 2023-02-14 13:24:54,688 32k INFO [2.5303597450256348, 2.077411413192749, 12.605754852294922, 22.12200355529785, 1.3761812448501587, 600, 9.991253280566489e-05]
21
+ 2023-02-14 13:25:42,491 32k INFO ====> Epoch: 8
22
+ 2023-02-14 13:27:13,843 32k INFO ====> Epoch: 9
23
+ 2023-02-14 13:28:28,606 32k INFO Train Epoch: 10 [76%]
24
+ 2023-02-14 13:28:28,606 32k INFO [2.6250500679016113, 2.1927847862243652, 10.148731231689453, 20.529062271118164, 0.5864875316619873, 800, 9.98875562335968e-05]
25
+ 2023-02-14 13:28:45,437 32k INFO ====> Epoch: 10
26
+ 2023-02-14 13:30:16,681 32k INFO ====> Epoch: 11
27
+ 2023-02-14 13:31:48,026 32k INFO ====> Epoch: 12
28
+ 2023-02-14 13:32:23,413 32k INFO Train Epoch: 13 [20%]
29
+ 2023-02-14 13:32:23,413 32k INFO [2.4075894355773926, 2.307851791381836, 11.19032096862793, 22.16382598876953, 1.286623239517212, 1000, 9.98501030820433e-05]
30
+ 2023-02-14 13:32:27,543 32k INFO Saving model and optimizer state at iteration 13 to ./logs\32k\G_1000.pth
31
+ 2023-02-14 13:32:44,941 32k INFO Saving model and optimizer state at iteration 13 to ./logs\32k\D_1000.pth
32
+ 2023-02-14 13:33:44,326 32k INFO ====> Epoch: 13
33
+ 2023-02-14 13:35:15,814 32k INFO ====> Epoch: 14
34
+ 2023-02-14 13:36:22,132 32k INFO Train Epoch: 15 [63%]
35
+ 2023-02-14 13:36:22,132 32k INFO [2.5968217849731445, 2.164472818374634, 8.871170043945312, 20.146108627319336, 0.8499955534934998, 1200, 9.982514211643064e-05]
36
+ 2023-02-14 13:36:47,621 32k INFO ====> Epoch: 15
37
+ 2023-02-14 13:38:19,098 32k INFO ====> Epoch: 16
38
+ 2023-02-14 13:39:50,485 32k INFO ====> Epoch: 17
39
+ 2023-02-14 13:40:17,300 32k INFO Train Epoch: 18 [7%]
40
+ 2023-02-14 13:40:17,300 32k INFO [2.55147647857666, 2.1380293369293213, 11.658864974975586, 21.447202682495117, 1.0160374641418457, 1400, 9.978771236724554e-05]
41
+ 2023-02-14 13:41:22,298 32k INFO ====> Epoch: 18
42
+ 2023-02-14 13:42:53,875 32k INFO ====> Epoch: 19
43
+ 2023-02-14 13:43:51,564 32k INFO Train Epoch: 20 [51%]
44
+ 2023-02-14 13:43:51,565 32k INFO [2.5742850303649902, 2.244190216064453, 8.551454544067383, 19.180246353149414, 0.9120607376098633, 1600, 9.976276699833672e-05]
45
+ 2023-02-14 13:44:25,617 32k INFO ====> Epoch: 20
46
+ 2023-02-14 13:45:57,188 32k INFO ====> Epoch: 21
47
+ 2023-02-14 13:47:25,925 32k INFO Train Epoch: 22 [95%]
48
+ 2023-02-14 13:47:25,925 32k INFO [2.5543036460876465, 2.2138490676879883, 10.766397476196289, 21.196224212646484, 0.7341710329055786, 1800, 9.973782786538036e-05]
49
+ 2023-02-14 13:47:29,068 32k INFO ====> Epoch: 22
50
+ 2023-02-14 13:49:00,647 32k INFO ====> Epoch: 23
51
+ 2023-02-14 13:50:32,139 32k INFO ====> Epoch: 24
52
+ 2023-02-14 13:51:21,238 32k INFO Train Epoch: 25 [39%]
53
+ 2023-02-14 13:51:21,238 32k INFO [2.556088447570801, 2.2134010791778564, 11.56871223449707, 19.313758850097656, 1.033575177192688, 2000, 9.970043085494672e-05]
54
+ 2023-02-14 13:51:25,444 32k INFO Saving model and optimizer state at iteration 25 to ./logs\32k\G_2000.pth
55
+ 2023-02-14 13:51:42,644 32k INFO Saving model and optimizer state at iteration 25 to ./logs\32k\D_2000.pth
56
+ 2023-02-14 13:52:28,601 32k INFO ====> Epoch: 25
57
+ 2023-02-14 13:54:00,018 32k INFO ====> Epoch: 26
58
+ 2023-02-14 13:55:20,005 32k INFO Train Epoch: 27 [83%]
59
+ 2023-02-14 13:55:20,005 32k INFO [2.6195037364959717, 2.2152504920959473, 9.765068054199219, 19.97799301147461, 0.9908173680305481, 2200, 9.967550730505221e-05]
60
+ 2023-02-14 13:55:31,723 32k INFO ====> Epoch: 27
61
+ 2023-02-14 13:57:03,227 32k INFO ====> Epoch: 28
62
+ 2023-02-14 13:58:38,892 32k INFO ====> Epoch: 29
63
+ 2023-02-14 13:59:19,484 32k INFO Train Epoch: 30 [27%]
64
+ 2023-02-14 13:59:19,484 32k INFO [2.4715116024017334, 2.2915375232696533, 13.360817909240723, 22.131193161010742, 1.3168777227401733, 2400, 9.963813366190753e-05]
65
+ 2023-02-14 14:00:10,655 32k INFO ====> Epoch: 30
66
+ 2023-02-14 14:01:42,081 32k INFO ====> Epoch: 31
67
+ 2023-02-14 14:02:53,596 32k INFO Train Epoch: 32 [71%]
68
+ 2023-02-14 14:02:53,596 32k INFO [2.593963384628296, 2.0387449264526367, 9.328591346740723, 17.955137252807617, 0.30882203578948975, 2600, 9.961322568533789e-05]
69
+ 2023-02-14 14:03:13,877 32k INFO ====> Epoch: 32
70
+ 2023-02-14 14:04:45,281 32k INFO ====> Epoch: 33
71
+ 2023-02-14 14:06:16,692 32k INFO ====> Epoch: 34
72
+ 2023-02-14 14:06:48,668 32k INFO Train Epoch: 35 [15%]
73
+ 2023-02-14 14:06:48,669 32k INFO [2.5350048542022705, 1.9605062007904053, 7.99984884262085, 16.31661033630371, 0.5040841698646545, 2800, 9.957587539488128e-05]
74
+ 2023-02-14 14:07:48,449 32k INFO ====> Epoch: 35
75
+ 2023-02-14 14:09:20,138 32k INFO ====> Epoch: 36
76
+ 2023-02-14 14:10:23,083 32k INFO Train Epoch: 37 [59%]
77
+ 2023-02-14 14:10:23,083 32k INFO [2.4650959968566895, 2.2761664390563965, 9.025921821594238, 19.93177604675293, 0.5862252712249756, 3000, 9.95509829819056e-05]
78
+ 2023-02-14 14:10:27,302 32k INFO Saving model and optimizer state at iteration 37 to ./logs\32k\G_3000.pth
79
+ 2023-02-14 14:10:44,327 32k INFO Saving model and optimizer state at iteration 37 to ./logs\32k\D_3000.pth
80
+ 2023-02-14 14:11:16,616 32k INFO ====> Epoch: 37
81
+ 2023-02-14 14:12:50,532 32k INFO ====> Epoch: 38
82
+ 2023-02-14 14:14:23,408 32k INFO ====> Epoch: 39
83
+ 2023-02-14 14:14:46,793 32k INFO Train Epoch: 40 [2%]
84
+ 2023-02-14 14:14:46,794 32k INFO [2.3914408683776855, 2.3529629707336426, 12.639781951904297, 19.53929901123047, 0.5159912109375, 3200, 9.951365602954526e-05]
85
+ 2023-02-14 14:15:55,371 32k INFO ====> Epoch: 40
86
+ 2023-02-14 14:17:27,123 32k INFO ====> Epoch: 41
87
+ 2023-02-14 14:18:21,616 32k INFO Train Epoch: 42 [46%]
88
+ 2023-02-14 14:18:21,616 32k INFO [2.4428353309631348, 2.258873462677002, 10.040135383605957, 17.569446563720703, 0.9567443132400513, 3400, 9.948877917043875e-05]
89
+ 2023-02-14 14:18:59,327 32k INFO ====> Epoch: 42
90
+ 2023-02-14 14:20:31,127 32k INFO ====> Epoch: 43
91
+ 2023-02-14 14:21:56,538 32k INFO Train Epoch: 44 [90%]
92
+ 2023-02-14 14:21:56,539 32k INFO [2.3611392974853516, 2.405252456665039, 12.823965072631836, 20.826034545898438, 0.8344462513923645, 3600, 9.94639085301583e-05]
93
+ 2023-02-14 14:22:03,119 32k INFO ====> Epoch: 44
94
+ 2023-02-14 14:23:34,741 32k INFO ====> Epoch: 45
95
+ 2023-02-14 14:25:06,470 32k INFO ====> Epoch: 46
96
+ 2023-02-14 14:25:52,327 32k INFO Train Epoch: 47 [34%]
97
+ 2023-02-14 14:25:52,327 32k INFO [2.4644553661346436, 2.2366631031036377, 11.37562370300293, 20.556499481201172, 0.9424434304237366, 3800, 9.942661422663591e-05]
98
+ 2023-02-14 14:26:38,621 32k INFO ====> Epoch: 47
99
+ 2023-02-14 14:28:10,337 32k INFO ====> Epoch: 48
100
+ 2023-02-14 14:29:27,206 32k INFO Train Epoch: 49 [78%]
101
+ 2023-02-14 14:29:27,206 32k INFO [2.5212016105651855, 2.3413655757904053, 10.579129219055176, 19.582210540771484, 0.94678795337677, 4000, 9.940175912662009e-05]
102
+ 2023-02-14 14:29:31,315 32k INFO Saving model and optimizer state at iteration 49 to ./logs\32k\G_4000.pth
103
+ 2023-02-14 14:29:48,727 32k INFO Saving model and optimizer state at iteration 49 to ./logs\32k\D_4000.pth
104
+ 2023-02-14 14:30:07,524 32k INFO ====> Epoch: 49
105
+ 2023-02-14 14:31:39,485 32k INFO ====> Epoch: 50
106
+ 2023-02-14 14:33:11,385 32k INFO ====> Epoch: 51
107
+ 2023-02-14 14:33:48,633 32k INFO Train Epoch: 52 [22%]
108
+ 2023-02-14 14:33:48,634 32k INFO [2.2625677585601807, 2.5999932289123535, 16.192663192749023, 21.976665496826172, 0.7557628750801086, 4200, 9.936448812621091e-05]
109
+ 2023-02-14 14:34:43,699 32k INFO ====> Epoch: 52
110
+ 2023-02-14 14:36:15,604 32k INFO ====> Epoch: 53
111
+ 2023-02-14 14:37:23,825 32k INFO Train Epoch: 54 [66%]
112
+ 2023-02-14 14:37:23,825 32k INFO [2.500643730163574, 2.2777493000030518, 8.213461875915527, 17.501588821411133, 0.7716516256332397, 4400, 9.933964855674948e-05]
113
+ 2023-02-14 14:37:47,647 32k INFO ====> Epoch: 54
114
+ 2023-02-14 14:39:19,631 32k INFO ====> Epoch: 55
115
+ 2023-02-14 14:40:51,967 32k INFO ====> Epoch: 56
116
+ 2023-02-14 14:41:20,508 32k INFO Train Epoch: 57 [10%]
117
+ 2023-02-14 14:41:20,508 32k INFO [2.4037282466888428, 2.369466543197632, 11.0797758102417, 18.995946884155273, 0.6406805515289307, 4600, 9.930240084489267e-05]
118
+ 2023-02-14 14:42:23,986 32k INFO ====> Epoch: 57
119
+ 2023-02-14 14:43:56,023 32k INFO ====> Epoch: 58
120
+ 2023-02-14 14:44:55,964 32k INFO Train Epoch: 59 [54%]
121
+ 2023-02-14 14:44:55,965 32k INFO [2.243375778198242, 2.4461309909820557, 15.596379280090332, 22.729717254638672, 0.9244585037231445, 4800, 9.927757679628145e-05]
122
+ 2023-02-14 14:45:28,557 32k INFO ====> Epoch: 59
123
+ 2023-02-14 14:47:00,367 32k INFO ====> Epoch: 60
124
+ 2023-02-14 14:48:31,104 32k INFO Train Epoch: 61 [98%]
125
+ 2023-02-14 14:48:31,105 32k INFO [2.5503604412078857, 2.111229658126831, 8.807084083557129, 16.10047721862793, 1.107606053352356, 5000, 9.92527589532945e-05]
126
+ 2023-02-14 14:48:35,266 32k INFO Saving model and optimizer state at iteration 61 to ./logs\32k\G_5000.pth
127
+ 2023-02-14 14:48:51,439 32k INFO Saving model and optimizer state at iteration 61 to ./logs\32k\D_5000.pth
128
+ 2023-02-14 14:48:56,220 32k INFO ====> Epoch: 61
129
+ 2023-02-14 14:50:27,858 32k INFO ====> Epoch: 62
130
+ 2023-02-14 14:51:59,496 32k INFO ====> Epoch: 63
131
+ 2023-02-14 14:52:50,498 32k INFO Train Epoch: 64 [41%]
132
+ 2023-02-14 14:52:50,498 32k INFO [2.603325128555298, 2.3429884910583496, 11.47877025604248, 19.95724868774414, 0.4535157382488251, 5200, 9.921554382096622e-05]
133
+ 2023-02-14 14:53:31,542 32k INFO ====> Epoch: 64
134
+ 2023-02-14 14:55:03,278 32k INFO ====> Epoch: 65
135
+ 2023-02-14 14:56:25,149 32k INFO Train Epoch: 66 [85%]
136
+ 2023-02-14 14:56:25,149 32k INFO [2.548145055770874, 2.1794002056121826, 8.618596076965332, 18.201990127563477, 0.42253807187080383, 5400, 9.919074148525384e-05]
137
+ 2023-02-14 14:56:35,169 32k INFO ====> Epoch: 66
138
+ 2023-02-14 14:58:06,861 32k INFO ====> Epoch: 67
139
+ 2023-02-14 14:59:38,893 32k INFO ====> Epoch: 68
140
+ 2023-02-14 15:00:21,295 32k INFO Train Epoch: 69 [29%]
141
+ 2023-02-14 15:00:21,295 32k INFO [2.462594985961914, 2.514474868774414, 8.234503746032715, 16.56818962097168, 0.3946729898452759, 5600, 9.915354960656915e-05]
142
+ 2023-02-14 15:01:11,023 32k INFO ====> Epoch: 69
143
+ 2023-02-14 15:02:42,743 32k INFO ====> Epoch: 70
144
+ 2023-02-14 15:03:56,160 32k INFO Train Epoch: 71 [73%]
145
+ 2023-02-14 15:03:56,161 32k INFO [2.3674912452697754, 2.400963306427002, 11.68331241607666, 21.614397048950195, 0.8642704486846924, 5800, 9.912876276844171e-05]
146
+ 2023-02-14 15:04:14,926 32k INFO ====> Epoch: 71
147
+ 2023-02-14 15:05:46,720 32k INFO ====> Epoch: 72
148
+ 2023-02-14 15:07:18,452 32k INFO ====> Epoch: 73
149
+ 2023-02-14 15:07:52,317 32k INFO Train Epoch: 74 [17%]
150
+ 2023-02-14 15:07:52,318 32k INFO [2.3848366737365723, 2.3195393085479736, 11.794806480407715, 20.811321258544922, 0.9752936959266663, 6000, 9.909159412887068e-05]
151
+ 2023-02-14 15:07:56,403 32k INFO Saving model and optimizer state at iteration 74 to ./logs\32k\G_6000.pth
152
+ 2023-02-14 15:08:11,990 32k INFO Saving model and optimizer state at iteration 74 to ./logs\32k\D_6000.pth
153
+ 2023-02-14 15:09:13,833 32k INFO ====> Epoch: 74
154
+ 2023-02-14 15:10:45,810 32k INFO ====> Epoch: 75
155
+ 2023-02-14 15:11:50,593 32k INFO Train Epoch: 76 [61%]
156
+ 2023-02-14 15:11:50,594 32k INFO [2.413219451904297, 2.3621764183044434, 11.660679817199707, 19.284757614135742, 0.46086761355400085, 6200, 9.906682277864462e-05]
157
+ 2023-02-14 15:12:17,911 32k INFO ====> Epoch: 76
158
+ 2023-02-14 15:13:49,709 32k INFO ====> Epoch: 77
159
+ 2023-02-14 15:15:21,342 32k INFO ====> Epoch: 78
160
+ 2023-02-14 15:15:46,525 32k INFO Train Epoch: 79 [5%]
161
+ 2023-02-14 15:15:46,526 32k INFO [2.4900527000427246, 2.1775360107421875, 11.207487106323242, 18.59693717956543, 1.0485306978225708, 6400, 9.902967736366644e-05]
162
+ 2023-02-14 15:16:53,382 32k INFO ====> Epoch: 79
163
+ 2023-02-14 15:18:25,180 32k INFO ====> Epoch: 80
164
+ 2023-02-14 15:19:21,341 32k INFO Train Epoch: 81 [49%]
165
+ 2023-02-14 15:19:21,342 32k INFO [2.4466681480407715, 2.321159839630127, 10.79179573059082, 18.92087173461914, 0.9803774356842041, 6600, 9.900492149166423e-05]
166
+ 2023-02-14 15:19:57,171 32k INFO ====> Epoch: 81
167
+ 2023-02-14 15:21:28,987 32k INFO ====> Epoch: 82
168
+ 2023-02-14 15:22:56,286 32k INFO Train Epoch: 83 [93%]
169
+ 2023-02-14 15:22:56,287 32k INFO [2.425461530685425, 2.4654641151428223, 11.531881332397461, 20.07356071472168, 1.0066664218902588, 6800, 9.89801718082432e-05]
170
+ 2023-02-14 15:23:01,149 32k INFO ====> Epoch: 83
171
+ 2023-02-14 15:24:32,889 32k INFO ====> Epoch: 84
172
+ 2023-02-14 15:26:04,666 32k INFO ====> Epoch: 85
173
+ 2023-02-14 15:26:52,217 32k INFO Train Epoch: 86 [37%]
174
+ 2023-02-14 15:26:52,217 32k INFO [2.526332378387451, 2.203555107116699, 11.341078758239746, 20.046627044677734, 1.3592050075531006, 7000, 9.894305888331732e-05]
175
+ 2023-02-14 15:26:56,417 32k INFO Saving model and optimizer state at iteration 86 to ./logs\32k\G_7000.pth
176
+ 2023-02-14 15:27:14,398 32k INFO Saving model and optimizer state at iteration 86 to ./logs\32k\D_7000.pth
177
+ 2023-02-14 15:28:02,287 32k INFO ====> Epoch: 86
178
+ 2023-02-14 15:29:33,965 32k INFO ====> Epoch: 87
179
+ 2023-02-14 15:30:52,509 32k INFO Train Epoch: 88 [80%]
180
+ 2023-02-14 15:30:52,509 32k INFO [2.5021166801452637, 2.4259166717529297, 8.362788200378418, 17.521188735961914, 1.4112741947174072, 7200, 9.891832466458178e-05]
181
+ 2023-02-14 15:31:05,995 32k INFO ====> Epoch: 88
182
+ 2023-02-14 15:32:37,695 32k INFO ====> Epoch: 89
183
+ 2023-02-14 15:34:09,432 32k INFO ====> Epoch: 90
184
+ 2023-02-14 15:34:48,347 32k INFO Train Epoch: 91 [24%]
185
+ 2023-02-14 15:34:48,347 32k INFO [2.2584304809570312, 2.37516188621521, 11.344868659973145, 20.501863479614258, 0.8927188515663147, 7400, 9.888123492943583e-05]
186
+ 2023-02-14 15:35:41,516 32k INFO ====> Epoch: 91
187
+ 2023-02-14 15:37:13,309 32k INFO ====> Epoch: 92
188
+ 2023-02-14 15:38:23,255 32k INFO Train Epoch: 93 [68%]
189
+ 2023-02-14 15:38:23,256 32k INFO [2.407334327697754, 2.4313995838165283, 5.9084062576293945, 14.895120620727539, 0.34809207916259766, 7600, 9.885651616572276e-05]
190
+ 2023-02-14 15:38:45,350 32k INFO ====> Epoch: 93
191
+ 2023-02-14 15:40:17,151 32k INFO ====> Epoch: 94
192
+ 2023-02-14 15:41:48,881 32k INFO ====> Epoch: 95
193
+ 2023-02-14 15:42:19,249 32k INFO Train Epoch: 96 [12%]
194
+ 2023-02-14 15:42:19,250 32k INFO [2.475175142288208, 2.287485361099243, 12.157411575317383, 19.902236938476562, 0.8755276799201965, 7800, 9.881944960586671e-05]
195
+ 2023-02-14 15:43:20,970 32k INFO ====> Epoch: 96
196
+ 2023-02-14 15:44:52,717 32k INFO ====> Epoch: 97
197
+ 2023-02-14 15:45:54,039 32k INFO Train Epoch: 98 [56%]
198
+ 2023-02-14 15:45:54,040 32k INFO [2.4083688259124756, 2.3332595825195312, 8.003752708435059, 16.818313598632812, 0.21219749748706818, 8000, 9.879474628751914e-05]
199
+ 2023-02-14 15:45:58,128 32k INFO Saving model and optimizer state at iteration 98 to ./logs\32k\G_8000.pth
200
+ 2023-02-14 15:46:17,546 32k INFO Saving model and optimizer state at iteration 98 to ./logs\32k\D_8000.pth
201
+ 2023-02-14 15:46:51,611 32k INFO ====> Epoch: 98
202
+ 2023-02-14 15:48:23,605 32k INFO ====> Epoch: 99
203
+ 2023-02-14 15:49:55,516 32k INFO ====> Epoch: 100
204
+ 2023-02-14 15:50:17,192 32k INFO Train Epoch: 101 [0%]
205
+ 2023-02-14 15:50:17,193 32k INFO [2.4577560424804688, 2.4049196243286133, 9.910334587097168, 17.469593048095703, 1.0077900886535645, 8200, 9.875770288847208e-05]
206
+ 2023-02-14 15:51:27,581 32k INFO ====> Epoch: 101
207
+ 2023-02-14 15:52:59,453 32k INFO ====> Epoch: 102
208
+ 2023-02-14 15:53:52,351 32k INFO Train Epoch: 103 [44%]
209
+ 2023-02-14 15:53:52,352 32k INFO [2.3302505016326904, 2.4835445880889893, 12.40600299835205, 19.35659408569336, 1.1815543174743652, 8400, 9.873301500583906e-05]
210
+ 2023-02-14 15:54:31,690 32k INFO ====> Epoch: 103
211
+ 2023-02-14 15:56:03,804 32k INFO ====> Epoch: 104
212
+ 2023-02-14 15:57:27,545 32k INFO Train Epoch: 105 [88%]
213
+ 2023-02-14 15:57:27,546 32k INFO [2.442326068878174, 2.3513882160186768, 8.61225700378418, 19.59931755065918, 0.6629721522331238, 8600, 9.870833329479095e-05]
214
+ 2023-02-14 15:57:35,926 32k INFO ====> Epoch: 105
215
+ 2023-02-14 15:59:07,717 32k INFO ====> Epoch: 106
216
+ 2023-02-14 16:00:39,510 32k INFO ====> Epoch: 107
217
+ 2023-02-14 16:01:23,648 32k INFO Train Epoch: 108 [32%]
218
+ 2023-02-14 16:01:23,649 32k INFO [2.329326629638672, 2.2350986003875732, 12.052788734436035, 20.033588409423828, 0.4254380762577057, 8800, 9.867132229656573e-05]
219
+ 2023-02-14 16:02:11,617 32k INFO ====> Epoch: 108
220
+ 2023-02-14 16:03:43,324 32k INFO ====> Epoch: 109
221
+ 2023-02-14 16:04:58,449 32k INFO Train Epoch: 110 [76%]
222
+ 2023-02-14 16:04:58,449 32k INFO [2.2845022678375244, 2.4646148681640625, 13.254862785339355, 20.803882598876953, 0.39776870608329773, 9000, 9.864665600773098e-05]
223
+ 2023-02-14 16:05:02,554 32k INFO Saving model and optimizer state at iteration 110 to ./logs\32k\G_9000.pth
224
+ 2023-02-14 16:05:20,872 32k INFO Saving model and optimizer state at iteration 110 to ./logs\32k\D_9000.pth
225
+ 2023-02-14 16:05:41,237 32k INFO ====> Epoch: 110
226
+ 2023-02-14 16:07:12,826 32k INFO ====> Epoch: 111
227
+ 2023-02-14 16:08:44,738 32k INFO ====> Epoch: 112
228
+ 2023-02-14 16:09:20,227 32k INFO Train Epoch: 113 [20%]
229
+ 2023-02-14 16:09:20,228 32k INFO [2.4082977771759033, 2.255082845687866, 10.537095069885254, 17.689083099365234, 0.7687245607376099, 9200, 9.86096681355974e-05]
230
+ 2023-02-14 16:10:16,749 32k INFO ====> Epoch: 113
231
+ 2023-02-14 16:11:48,707 32k INFO ====> Epoch: 114
232
+ 2023-02-14 16:12:55,268 32k INFO Train Epoch: 115 [63%]
233
+ 2023-02-14 16:12:55,268 32k INFO [2.531501293182373, 2.146554946899414, 8.033232688903809, 17.08489990234375, 0.7147048115730286, 9400, 9.858501725933955e-05]
234
+ 2023-02-14 16:13:20,854 32k INFO ====> Epoch: 115
235
+ 2023-02-14 16:14:52,750 32k INFO ====> Epoch: 116
236
+ 2023-02-14 16:16:24,652 32k INFO ====> Epoch: 117
237
+ 2023-02-14 16:16:51,576 32k INFO Train Epoch: 118 [7%]
238
+ 2023-02-14 16:16:51,576 32k INFO [2.305955648422241, 2.5261385440826416, 11.671979904174805, 17.262502670288086, 0.9132139682769775, 9600, 9.854805249884741e-05]
239
+ 2023-02-14 16:17:56,852 32k INFO ====> Epoch: 118
240
+ 2023-02-14 16:19:28,743 32k INFO ====> Epoch: 119
241
+ 2023-02-14 16:20:26,662 32k INFO Train Epoch: 120 [51%]
242
+ 2023-02-14 16:20:26,663 32k INFO [2.406419038772583, 2.3848094940185547, 12.830516815185547, 19.702857971191406, 0.9984562397003174, 9800, 9.8523417025536e-05]
243
+ 2023-02-14 16:21:00,932 32k INFO ====> Epoch: 120
244
+ 2023-02-14 16:22:32,586 32k INFO ====> Epoch: 121
245
+ 2023-02-14 16:24:01,646 32k INFO Train Epoch: 122 [95%]
246
+ 2023-02-14 16:24:01,646 32k INFO [2.6088125705718994, 2.3717613220214844, 7.807750225067139, 17.539306640625, 0.6654758453369141, 10000, 9.8498787710708e-05]
247
+ 2023-02-14 16:24:05,762 32k INFO Saving model and optimizer state at iteration 122 to ./logs\32k\G_10000.pth
248
+ 2023-02-14 16:24:21,684 32k INFO Saving model and optimizer state at iteration 122 to ./logs\32k\D_10000.pth
249
+ 2023-02-14 16:24:28,063 32k INFO ====> Epoch: 122
250
+ 2023-02-14 16:26:00,976 32k INFO ====> Epoch: 123
251
+ 2023-02-14 16:27:37,900 32k INFO ====> Epoch: 124
252
+ 2023-02-14 16:28:33,348 32k INFO Train Epoch: 125 [39%]
253
+ 2023-02-14 16:28:33,348 32k INFO [2.4001426696777344, 2.470517158508301, 13.341828346252441, 17.714656829833984, 0.679930567741394, 10200, 9.846185528225477e-05]
254
+ 2023-02-14 16:29:19,086 32k INFO ====> Epoch: 125
255
+ 2023-02-14 16:30:59,664 32k INFO ====> Epoch: 126
256
+ 2023-02-14 16:32:28,289 32k INFO Train Epoch: 127 [83%]
257
+ 2023-02-14 16:32:28,290 32k INFO [2.491032600402832, 2.2914695739746094, 10.223406791687012, 18.337860107421875, 0.9281787872314453, 10400, 9.84372413569007e-05]
258
+ 2023-02-14 16:32:41,455 32k INFO ====> Epoch: 127
259
+ 2023-02-14 16:34:22,334 32k INFO ====> Epoch: 128
260
+ 2023-02-14 16:36:01,890 32k INFO ====> Epoch: 129
261
+ 2023-02-14 16:36:43,266 32k INFO Train Epoch: 130 [27%]
262
+ 2023-02-14 16:36:43,266 32k INFO [2.5348987579345703, 2.291205883026123, 14.648847579956055, 19.59044647216797, 0.8180601596832275, 10600, 9.840033200544528e-05]
263
+ 2023-02-14 16:37:34,913 32k INFO ====> Epoch: 130
264
+ 2023-02-14 16:39:06,291 32k INFO ====> Epoch: 131
265
+ 2023-02-14 16:40:17,727 32k INFO Train Epoch: 132 [71%]
266
+ 2023-02-14 16:40:17,727 32k INFO [2.404866933822632, 2.1770548820495605, 9.80937671661377, 16.411579132080078, 0.1555909514427185, 10800, 9.837573345994909e-05]
267
+ 2023-02-14 16:40:37,992 32k INFO ====> Epoch: 132
268
+ 2023-02-14 16:42:09,446 32k INFO ====> Epoch: 133
269
+ 2023-02-14 16:43:42,676 32k INFO ====> Epoch: 134
270
+ 2023-02-14 16:44:16,320 32k INFO Train Epoch: 135 [15%]
271
+ 2023-02-14 16:44:16,320 32k INFO [2.379476547241211, 2.3253965377807617, 12.204051971435547, 18.108963012695312, 0.6560300588607788, 11000, 9.833884717107196e-05]
272
+ 2023-02-14 16:44:20,463 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\G_11000.pth
273
+ 2023-02-14 16:44:40,760 32k INFO Saving model and optimizer state at iteration 135 to ./logs\32k\D_11000.pth
274
+ 2023-02-14 16:45:43,602 32k INFO ====> Epoch: 135
275
+ 2023-02-14 16:47:14,892 32k INFO ====> Epoch: 136
276
+ 2023-02-14 16:48:17,804 32k INFO Train Epoch: 137 [59%]
277
+ 2023-02-14 16:48:17,804 32k INFO [2.182915210723877, 2.490650177001953, 13.673564910888672, 19.964622497558594, 0.8504718542098999, 11200, 9.831426399582366e-05]
278
+ 2023-02-14 16:48:46,586 32k INFO ====> Epoch: 137
279
+ 2023-02-14 16:50:17,982 32k INFO ====> Epoch: 138
280
+ 2023-02-14 16:51:49,652 32k INFO ====> Epoch: 139
281
+ 2023-02-14 16:52:13,059 32k INFO Train Epoch: 140 [2%]
282
+ 2023-02-14 16:52:13,059 32k INFO [2.4849462509155273, 2.2978439331054688, 10.085766792297363, 16.271583557128906, 0.9613367915153503, 11400, 9.827740075511432e-05]
283
+ 2023-02-14 16:53:21,336 32k INFO ====> Epoch: 140
284
+ 2023-02-14 16:54:52,874 32k INFO ====> Epoch: 141
285
+ 2023-02-14 16:55:48,996 32k INFO Train Epoch: 142 [46%]
286
+ 2023-02-14 16:55:48,996 32k INFO [2.419895887374878, 2.231900215148926, 9.550468444824219, 15.956775665283203, 0.6037944555282593, 11600, 9.825283294050992e-05]
287
+ 2023-02-14 16:56:34,619 32k INFO ====> Epoch: 142
288
+ 2023-02-14 16:58:12,965 32k INFO ====> Epoch: 143
289
+ 2023-02-14 16:59:51,011 32k INFO Train Epoch: 144 [90%]
290
+ 2023-02-14 16:59:51,012 32k INFO [2.526609182357788, 2.2438442707061768, 9.708596229553223, 18.94228744506836, 0.6018266081809998, 11800, 9.822827126747529e-05]
291
+ 2023-02-14 16:59:58,459 32k INFO ====> Epoch: 144
292
+ 2023-02-14 17:01:41,567 32k INFO ====> Epoch: 145
293
+ 2023-02-14 17:03:19,851 32k INFO ====> Epoch: 146
294
+ 2023-02-14 17:04:09,172 32k INFO Train Epoch: 147 [34%]
295
+ 2023-02-14 17:04:09,173 32k INFO [2.1274771690368652, 2.403050661087036, 14.53994083404541, 20.740161895751953, 0.8522300720214844, 12000, 9.819144027000834e-05]
296
+ 2023-02-14 17:04:13,341 32k INFO Saving model and optimizer state at iteration 147 to ./logs\32k\G_12000.pth
297
+ 2023-02-14 17:04:30,263 32k INFO Saving model and optimizer state at iteration 147 to ./logs\32k\D_12000.pth
298
+ 2023-02-14 17:05:36,434 32k INFO ====> Epoch: 147
32k-kokona/D_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed4fee15a03cf4e81fc980cd8c4f0b8daafd5a4cb0785811f86f4650fd4ebcaf
3
+ size 561098185
32k-kokona/D_14000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416cdeff6bf9eedee9d78cf228f811a10e8849b227f5939624edfde36fc8520e
3
+ size 561098185
32k-kokona/D_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62bd70ec686d3d9aa3afb56ec3674a9a1b0910d83b06612e1fad1f465bb132a5
3
+ size 561098185
32k-kokona/G_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91f68c46f38fdb554eae75b9d95506a8e0107eb8cd96920ff95ce86c40670b9e
3
+ size 699505437
32k-kokona/G_14000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f6989cc2d920ecefb5ada5ea0cedd24f3fdf4b78d39c972b9c9913efb7fce0a
3
+ size 699505437
32k-kokona/G_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6eb115d9a2819f1ba8ce914c8d91b020c9774dac5cc3912919b1b958b4b8154
3
+ size 699505437
32k-kokona/config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 17920,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 384,
23
+ "port": "8001"
24
+ },
25
+ "data": {
26
+ "training_files": "filelists/train.txt",
27
+ "validation_files": "filelists/val.txt",
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 32000,
30
+ "filter_length": 1280,
31
+ "hop_length": 320,
32
+ "win_length": 1280,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null
36
+ },
37
+ "model": {
38
+ "inter_channels": 192,
39
+ "hidden_channels": 192,
40
+ "filter_channels": 768,
41
+ "n_heads": 2,
42
+ "n_layers": 6,
43
+ "kernel_size": 3,
44
+ "p_dropout": 0.1,
45
+ "resblock": "1",
46
+ "resblock_kernel_sizes": [
47
+ 3,
48
+ 7,
49
+ 11
50
+ ],
51
+ "resblock_dilation_sizes": [
52
+ [
53
+ 1,
54
+ 3,
55
+ 5
56
+ ],
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ]
67
+ ],
68
+ "upsample_rates": [
69
+ 10,
70
+ 8,
71
+ 2,
72
+ 2
73
+ ],
74
+ "upsample_initial_channel": 512,
75
+ "upsample_kernel_sizes": [
76
+ 16,
77
+ 16,
78
+ 4,
79
+ 4
80
+ ],
81
+ "n_layers_q": 3,
82
+ "use_spectral_norm": false,
83
+ "gin_channels": 256,
84
+ "ssl_dim": 256,
85
+ "n_speakers": 2
86
+ },
87
+ "spk": {
88
+ "kokona": 0
89
+ }
90
+ }
32k-kokona/train.log ADDED
The diff for this file is too large to render. See raw diff
 
32k-noa/D_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b8eab94d94f7728d80f20cdc7e188dca8666dead1339aaeea50d481c4140e2
3
+ size 561098185
32k-noa/D_18000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb4ea2f1959c0ad0d0424e212ed9459335c0e21b09f92be767868750405fe38a
3
+ size 561098185
32k-noa/D_24000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc6bfc01e65c16db08ea5d3777824031c4244f06049ccc002550f0fdfca0f09b
3
+ size 561098185
32k-noa/D_30000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85d57c90d1aa91038816596083c68e331e5b216dab3ae0f48725e8fda0217fa4
3
+ size 561098185
32k-noa/D_36000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f54c8072c17903bb801df4a3702c337a0b035fb5d51e3d79c00f7b65da395656
3
+ size 561098185
32k-noa/D_42000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a04ca0e764bb9b3c5c7913de805188dd26a18bb455d809239375bc60b26ea00
3
+ size 561098185
32k-noa/D_48000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4973b83ae8cbdf17fcd8bc78719007080f506ba0abdab3a1f2f5b34a72fb0ce0
3
+ size 561098185
32k-noa/D_52000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e06587b01ea6c6a0b6ceb91d22297229bb890ed0c21df5d683a45740eea099eb
3
+ size 561098185
32k-noa/D_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eafa5b28ba668c9c63f8c4d16b78bdc3e31c9e441a4588e8f79536864bba23a3
3
+ size 561098185
32k-noa/G_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:104c34b18a1f34cdd54c95445007374290f01a2ce86e308bc1a21478a121877d
3
+ size 699505437
32k-noa/G_18000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1932b156601b59e66e34c002003c0c60d860bd4e09950c6557c86479fa82af45
3
+ size 699505437
32k-noa/G_24000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c17235e6a526e0168898326bb1457b223980caa6326f3fb8359672605e61edf
3
+ size 699505437
32k-noa/G_30000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24eab6880d65ad6cb7f45086b6012d50990f9675688c2e935b5a75d2abd92834
3
+ size 699505437
32k-noa/G_36000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f383936c90e09252b633ca4a95d88876f7200821b624d31cce631540ff3c59a0
3
+ size 699505437
32k-noa/G_42000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f392c5148762e2cfa96c1db5313a22ec9d43fe53c034bf868689efbe9c43f4
3
+ size 699505437
32k-noa/G_48000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:860dc68063b393a0894818c67fbab4f74438729912610c8f0c6df3a01e8bcb9b
3
+ size 699505437
32k-noa/G_52000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25343b80a20595750494e2b898aa4417faa5dfd93defbeaf4e81844c1b99e56b
3
+ size 699505437
32k-noa/G_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3f42f62f5b99651f1cd5d13646ce188e60ef595f890754c4f5497c043a2a67
3
+ size 699505437
32k-noa/config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 17920,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 384,
23
+ "port": "8001"
24
+ },
25
+ "data": {
26
+ "training_files": "filelists/train.txt",
27
+ "validation_files": "filelists/val.txt",
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 32000,
30
+ "filter_length": 1280,
31
+ "hop_length": 320,
32
+ "win_length": 1280,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null
36
+ },
37
+ "model": {
38
+ "inter_channels": 192,
39
+ "hidden_channels": 192,
40
+ "filter_channels": 768,
41
+ "n_heads": 2,
42
+ "n_layers": 6,
43
+ "kernel_size": 3,
44
+ "p_dropout": 0.1,
45
+ "resblock": "1",
46
+ "resblock_kernel_sizes": [
47
+ 3,
48
+ 7,
49
+ 11
50
+ ],
51
+ "resblock_dilation_sizes": [
52
+ [
53
+ 1,
54
+ 3,
55
+ 5
56
+ ],
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ]
67
+ ],
68
+ "upsample_rates": [
69
+ 10,
70
+ 8,
71
+ 2,
72
+ 2
73
+ ],
74
+ "upsample_initial_channel": 512,
75
+ "upsample_kernel_sizes": [
76
+ 16,
77
+ 16,
78
+ 4,
79
+ 4
80
+ ],
81
+ "n_layers_q": 3,
82
+ "use_spectral_norm": false,
83
+ "gin_channels": 256,
84
+ "ssl_dim": 256,
85
+ "n_speakers": 2
86
+ },
87
+ "spk": {
88
+ "noa": 0
89
+ }
90
+ }
32k-yuuka/D_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71468008b5d8bd10a59feb5096bec13ea1a9093ab22f777b029c8e5dc77e6cae
3
+ size 561098185
32k-yuuka/D_14000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:261eb55615d5d955798495bd0d02db54763c65c3f12d95cb4aaefd7f2471d6b5
3
+ size 561098185
32k-yuuka/D_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d612c970d4f99bd240ed52482556f700e310d867d6f155cfa58e6f9d59a7bf2
3
+ size 561098185
32k-yuuka/G_12000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c7d8004b4cebd15d8f772dbe70b8c75f759f889e934801c3136d0e3145ab63f
3
+ size 699505437
32k-yuuka/G_14000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de3b473ec193797a4a5084c876a4f2bbb82b29e40035e06e31ac8ba82d1ec74
3
+ size 699505437
32k-yuuka/G_6000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95803e3c432824f41ea08a82285a92e92611a6062bfa835f18d2d451ebf0b5c6
3
+ size 699505437
32k-yuuka/config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 17920,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 384,
23
+ "port": "8001"
24
+ },
25
+ "data": {
26
+ "training_files": "filelists/train.txt",
27
+ "validation_files": "filelists/val.txt",
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 32000,
30
+ "filter_length": 1280,
31
+ "hop_length": 320,
32
+ "win_length": 1280,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null
36
+ },
37
+ "model": {
38
+ "inter_channels": 192,
39
+ "hidden_channels": 192,
40
+ "filter_channels": 768,
41
+ "n_heads": 2,
42
+ "n_layers": 6,
43
+ "kernel_size": 3,
44
+ "p_dropout": 0.1,
45
+ "resblock": "1",
46
+ "resblock_kernel_sizes": [
47
+ 3,
48
+ 7,
49
+ 11
50
+ ],
51
+ "resblock_dilation_sizes": [
52
+ [
53
+ 1,
54
+ 3,
55
+ 5
56
+ ],
57
+ [
58
+ 1,
59
+ 3,
60
+ 5
61
+ ],
62
+ [
63
+ 1,
64
+ 3,
65
+ 5
66
+ ]
67
+ ],
68
+ "upsample_rates": [
69
+ 10,
70
+ 8,
71
+ 2,
72
+ 2
73
+ ],
74
+ "upsample_initial_channel": 512,
75
+ "upsample_kernel_sizes": [
76
+ 16,
77
+ 16,
78
+ 4,
79
+ 4
80
+ ],
81
+ "n_layers_q": 3,
82
+ "use_spectral_norm": false,
83
+ "gin_channels": 256,
84
+ "ssl_dim": 256,
85
+ "n_speakers": 2
86
+ },
87
+ "spk": {
88
+ "yuuka": 0
89
+ }
90
+ }
32k-yuuka/train.log ADDED
@@ -0,0 +1,984 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-02-19 00:52:17,563 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'yuuka': 0}, 'model_dir': './logs\\32k'}
2
+ 2023-02-19 00:52:17,563 32k WARNING K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
3
+ 2023-02-19 00:52:22,439 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
4
+ 2023-02-19 00:52:22,854 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
5
+ 2023-02-19 00:52:30,954 32k INFO Train Epoch: 1 [0%]
6
+ 2023-02-19 00:52:30,955 32k INFO [6.259579658508301, 2.384648084640503, 21.68582534790039, 51.37621307373047, 29.241214752197266, 0, 0.0001]
7
+ 2023-02-19 00:52:36,208 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
8
+ 2023-02-19 00:52:55,481 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
9
+ 2023-02-19 00:53:15,383 32k INFO ====> Epoch: 1
10
+ 2023-02-19 00:53:35,194 32k INFO ====> Epoch: 2
11
+ 2023-02-19 00:53:54,475 32k INFO ====> Epoch: 3
12
+ 2023-02-19 00:54:14,074 32k INFO ====> Epoch: 4
13
+ 2023-02-19 00:54:33,774 32k INFO ====> Epoch: 5
14
+ 2023-02-19 00:54:53,292 32k INFO ====> Epoch: 6
15
+ 2023-02-19 00:55:12,950 32k INFO ====> Epoch: 7
16
+ 2023-02-19 00:55:32,408 32k INFO ====> Epoch: 8
17
+ 2023-02-19 00:55:51,786 32k INFO ====> Epoch: 9
18
+ 2023-02-19 00:56:11,304 32k INFO ====> Epoch: 10
19
+ 2023-02-19 00:56:23,833 32k INFO Train Epoch: 11 [53%]
20
+ 2023-02-19 00:56:23,834 32k INFO [2.5820298194885254, 2.9517571926116943, 15.889677047729492, 22.983726501464844, 1.490109920501709, 200, 9.987507028906759e-05]
21
+ 2023-02-19 00:56:31,013 32k INFO ====> Epoch: 11
22
+ 2023-02-19 00:56:50,430 32k INFO ====> Epoch: 12
23
+ 2023-02-19 00:57:09,908 32k INFO ====> Epoch: 13
24
+ 2023-02-19 00:57:29,328 32k INFO ====> Epoch: 14
25
+ 2023-02-19 00:57:48,792 32k INFO ====> Epoch: 15
26
+ 2023-02-19 00:58:08,199 32k INFO ====> Epoch: 16
27
+ 2023-02-19 00:58:27,628 32k INFO ====> Epoch: 17
28
+ 2023-02-19 00:58:47,154 32k INFO ====> Epoch: 18
29
+ 2023-02-19 00:59:06,558 32k INFO ====> Epoch: 19
30
+ 2023-02-19 00:59:26,031 32k INFO ====> Epoch: 20
31
+ 2023-02-19 00:59:45,505 32k INFO ====> Epoch: 21
32
+ 2023-02-19 00:59:50,417 32k INFO Train Epoch: 22 [5%]
33
+ 2023-02-19 00:59:50,417 32k INFO [2.3022522926330566, 2.7468957901000977, 13.526983261108398, 18.26525115966797, 1.2778617143630981, 400, 9.973782786538036e-05]
34
+ 2023-02-19 01:00:05,254 32k INFO ====> Epoch: 22
35
+ 2023-02-19 01:00:24,645 32k INFO ====> Epoch: 23
36
+ 2023-02-19 01:00:44,092 32k INFO ====> Epoch: 24
37
+ 2023-02-19 01:01:03,835 32k INFO ====> Epoch: 25
38
+ 2023-02-19 01:01:23,360 32k INFO ====> Epoch: 26
39
+ 2023-02-19 01:01:43,029 32k INFO ====> Epoch: 27
40
+ 2023-02-19 01:02:02,552 32k INFO ====> Epoch: 28
41
+ 2023-02-19 01:02:22,021 32k INFO ====> Epoch: 29
42
+ 2023-02-19 01:02:41,450 32k INFO ====> Epoch: 30
43
+ 2023-02-19 01:03:00,956 32k INFO ====> Epoch: 31
44
+ 2023-02-19 01:03:14,323 32k INFO Train Epoch: 32 [58%]
45
+ 2023-02-19 01:03:14,323 32k INFO [2.2709786891937256, 2.5444483757019043, 16.769325256347656, 22.406368255615234, 1.2876263856887817, 600, 9.961322568533789e-05]
46
+ 2023-02-19 01:03:20,673 32k INFO ====> Epoch: 32
47
+ 2023-02-19 01:03:40,138 32k INFO ====> Epoch: 33
48
+ 2023-02-19 01:03:59,566 32k INFO ====> Epoch: 34
49
+ 2023-02-19 01:04:19,064 32k INFO ====> Epoch: 35
50
+ 2023-02-19 01:04:38,491 32k INFO ====> Epoch: 36
51
+ 2023-02-19 01:04:57,953 32k INFO ====> Epoch: 37
52
+ 2023-02-19 01:05:17,368 32k INFO ====> Epoch: 38
53
+ 2023-02-19 01:05:36,826 32k INFO ====> Epoch: 39
54
+ 2023-02-19 01:05:56,268 32k INFO ====> Epoch: 40
55
+ 2023-02-19 01:06:15,805 32k INFO ====> Epoch: 41
56
+ 2023-02-19 01:06:35,572 32k INFO ====> Epoch: 42
57
+ 2023-02-19 01:06:41,408 32k INFO Train Epoch: 43 [11%]
58
+ 2023-02-19 01:06:41,408 32k INFO [2.2252748012542725, 2.711310386657715, 18.655017852783203, 23.06989097595215, 0.9809578657150269, 800, 9.947634307304244e-05]
59
+ 2023-02-19 01:06:55,421 32k INFO ====> Epoch: 43
60
+ 2023-02-19 01:07:15,100 32k INFO ====> Epoch: 44
61
+ 2023-02-19 01:07:34,525 32k INFO ====> Epoch: 45
62
+ 2023-02-19 09:58:01,753 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'yuuka': 0}, 'model_dir': './logs\\32k'}
63
+ 2023-02-19 09:58:01,753 32k WARNING K:\AI\so-vits-svc-32k is not a git repository, therefore hash value comparison will be ignored.
64
+ 2023-02-19 09:58:06,761 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
65
+ 2023-02-19 09:58:07,189 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
66
+ 2023-02-19 09:58:15,314 32k INFO Train Epoch: 1 [0%]
67
+ 2023-02-19 09:58:15,315 32k INFO [4.885988712310791, 2.5791049003601074, 20.521387100219727, 48.8116455078125, 23.21308135986328, 0, 0.0001]
68
+ 2023-02-19 09:58:20,541 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
69
+ 2023-02-19 09:58:38,703 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
70
+ 2023-02-19 09:58:59,317 32k INFO ====> Epoch: 1
71
+ 2023-02-19 09:59:19,529 32k INFO ====> Epoch: 2
72
+ 2023-02-19 09:59:40,549 32k INFO ====> Epoch: 3
73
+ 2023-02-19 10:00:00,988 32k INFO ====> Epoch: 4
74
+ 2023-02-19 10:00:20,947 32k INFO ====> Epoch: 5
75
+ 2023-02-19 10:00:40,486 32k INFO ====> Epoch: 6
76
+ 2023-02-19 10:01:00,800 32k INFO ====> Epoch: 7
77
+ 2023-02-19 10:01:24,452 32k INFO ====> Epoch: 8
78
+ 2023-02-19 10:01:44,672 32k INFO ====> Epoch: 9
79
+ 2023-02-19 10:02:04,480 32k INFO ====> Epoch: 10
80
+ 2023-02-19 10:02:17,182 32k INFO Train Epoch: 11 [53%]
81
+ 2023-02-19 10:02:17,183 32k INFO [2.7012827396392822, 2.8637466430664062, 15.74413013458252, 22.798664093017578, 1.4917662143707275, 200, 9.987507028906759e-05]
82
+ 2023-02-19 10:02:24,886 32k INFO ====> Epoch: 11
83
+ 2023-02-19 10:02:44,970 32k INFO ====> Epoch: 12
84
+ 2023-02-19 10:03:05,381 32k INFO ====> Epoch: 13
85
+ 2023-02-19 10:03:27,787 32k INFO ====> Epoch: 14
86
+ 2023-02-19 10:03:48,128 32k INFO ====> Epoch: 15
87
+ 2023-02-19 10:04:09,326 32k INFO ====> Epoch: 16
88
+ 2023-02-19 10:04:30,931 32k INFO ====> Epoch: 17
89
+ 2023-02-19 10:04:50,506 32k INFO ====> Epoch: 18
90
+ 2023-02-19 10:05:10,053 32k INFO ====> Epoch: 19
91
+ 2023-02-19 10:05:29,550 32k INFO ====> Epoch: 20
92
+ 2023-02-19 10:05:49,075 32k INFO ====> Epoch: 21
93
+ 2023-02-19 10:05:54,186 32k INFO Train Epoch: 22 [5%]
94
+ 2023-02-19 10:05:54,186 32k INFO [2.638063669204712, 2.1183853149414062, 12.34074878692627, 17.773197174072266, 1.2548296451568604, 400, 9.973782786538036e-05]
95
+ 2023-02-19 10:06:11,523 32k INFO ====> Epoch: 22
96
+ 2023-02-19 10:06:31,785 32k INFO ====> Epoch: 23
97
+ 2023-02-19 10:06:51,275 32k INFO ====> Epoch: 24
98
+ 2023-02-19 10:07:10,746 32k INFO ====> Epoch: 25
99
+ 2023-02-19 10:07:30,179 32k INFO ====> Epoch: 26
100
+ 2023-02-19 10:07:49,638 32k INFO ====> Epoch: 27
101
+ 2023-02-19 10:08:09,150 32k INFO ====> Epoch: 28
102
+ 2023-02-19 10:08:28,647 32k INFO ====> Epoch: 29
103
+ 2023-02-19 10:08:48,090 32k INFO ====> Epoch: 30
104
+ 2023-02-19 10:09:07,588 32k INFO ====> Epoch: 31
105
+ 2023-02-19 10:09:20,991 32k INFO Train Epoch: 32 [58%]
106
+ 2023-02-19 10:09:20,992 32k INFO [2.252321481704712, 2.6135807037353516, 16.764589309692383, 22.221206665039062, 1.2719413042068481, 600, 9.961322568533789e-05]
107
+ 2023-02-19 10:09:27,359 32k INFO ====> Epoch: 32
108
+ 2023-02-19 10:09:46,836 32k INFO ====> Epoch: 33
109
+ 2023-02-19 10:10:06,405 32k INFO ====> Epoch: 34
110
+ 2023-02-19 10:10:25,867 32k INFO ====> Epoch: 35
111
+ 2023-02-19 10:10:45,391 32k INFO ====> Epoch: 36
112
+ 2023-02-19 10:11:04,848 32k INFO ====> Epoch: 37
113
+ 2023-02-19 10:11:24,345 32k INFO ====> Epoch: 38
114
+ 2023-02-19 10:11:43,820 32k INFO ====> Epoch: 39
115
+ 2023-02-19 10:12:03,363 32k INFO ====> Epoch: 40
116
+ 2023-02-19 10:12:22,862 32k INFO ====> Epoch: 41
117
+ 2023-02-19 10:12:42,390 32k INFO ====> Epoch: 42
118
+ 2023-02-19 10:12:48,119 32k INFO Train Epoch: 43 [11%]
119
+ 2023-02-19 10:12:48,119 32k INFO [2.34789776802063, 2.904107093811035, 18.322242736816406, 23.1386661529541, 0.9494408369064331, 800, 9.947634307304244e-05]
120
+ 2023-02-19 10:13:02,224 32k INFO ====> Epoch: 43
121
+ 2023-02-19 10:13:22,121 32k INFO ====> Epoch: 44
122
+ 2023-02-19 10:13:42,138 32k INFO ====> Epoch: 45
123
+ 2023-02-19 10:14:03,880 32k INFO ====> Epoch: 46
124
+ 2023-02-19 10:14:23,490 32k INFO ====> Epoch: 47
125
+ 2023-02-19 10:14:43,058 32k INFO ====> Epoch: 48
126
+ 2023-02-19 10:15:02,615 32k INFO ====> Epoch: 49
127
+ 2023-02-19 10:15:22,189 32k INFO ====> Epoch: 50
128
+ 2023-02-19 10:15:41,717 32k INFO ====> Epoch: 51
129
+ 2023-02-19 10:16:01,286 32k INFO ====> Epoch: 52
130
+ 2023-02-19 10:16:15,520 32k INFO Train Epoch: 53 [63%]
131
+ 2023-02-19 10:16:15,521 32k INFO [2.2673277854919434, 2.6267404556274414, 14.748597145080566, 20.428760528564453, 0.9188843965530396, 1000, 9.935206756519513e-05]
132
+ 2023-02-19 10:16:19,825 32k INFO Saving model and optimizer state at iteration 53 to ./logs\32k\G_1000.pth
133
+ 2023-02-19 10:16:38,782 32k INFO Saving model and optimizer state at iteration 53 to ./logs\32k\D_1000.pth
134
+ 2023-02-19 10:16:47,949 32k INFO ====> Epoch: 53
135
+ 2023-02-19 10:17:11,828 32k INFO ====> Epoch: 54
136
+ 2023-02-19 10:17:32,602 32k INFO ====> Epoch: 55
137
+ 2023-02-19 10:17:54,697 32k INFO ====> Epoch: 56
138
+ 2023-02-19 10:18:15,505 32k INFO ====> Epoch: 57
139
+ 2023-02-19 10:18:36,471 32k INFO ====> Epoch: 58
140
+ 2023-02-19 10:18:56,129 32k INFO ====> Epoch: 59
141
+ 2023-02-19 10:19:15,687 32k INFO ====> Epoch: 60
142
+ 2023-02-19 10:19:35,249 32k INFO ====> Epoch: 61
143
+ 2023-02-19 10:19:54,920 32k INFO ====> Epoch: 62
144
+ 2023-02-19 10:20:14,564 32k INFO ====> Epoch: 63
145
+ 2023-02-19 10:20:21,217 32k INFO Train Epoch: 64 [16%]
146
+ 2023-02-19 10:20:21,217 32k INFO [2.6431660652160645, 2.1686131954193115, 11.168325424194336, 15.736719131469727, 0.8130778074264526, 1200, 9.921554382096622e-05]
147
+ 2023-02-19 10:20:34,458 32k INFO ====> Epoch: 64
148
+ 2023-02-19 10:20:54,137 32k INFO ====> Epoch: 65
149
+ 2023-02-19 10:21:13,820 32k INFO ====> Epoch: 66
150
+ 2023-02-19 10:21:33,481 32k INFO ====> Epoch: 67
151
+ 2023-02-19 10:21:53,127 32k INFO ====> Epoch: 68
152
+ 2023-02-19 10:22:12,705 32k INFO ====> Epoch: 69
153
+ 2023-02-19 10:22:32,335 32k INFO ====> Epoch: 70
154
+ 2023-02-19 10:22:52,013 32k INFO ====> Epoch: 71
155
+ 2023-02-19 10:23:11,631 32k INFO ====> Epoch: 72
156
+ 2023-02-19 10:23:31,243 32k INFO ====> Epoch: 73
157
+ 2023-02-19 10:23:46,491 32k INFO Train Epoch: 74 [68%]
158
+ 2023-02-19 10:23:46,491 32k INFO [2.523651361465454, 2.3198585510253906, 13.49683952331543, 19.15787124633789, 0.8243404626846313, 1400, 9.909159412887068e-05]
159
+ 2023-02-19 10:23:51,274 32k INFO ====> Epoch: 74
160
+ 2023-02-19 10:24:10,913 32k INFO ====> Epoch: 75
161
+ 2023-02-19 10:24:30,500 32k INFO ====> Epoch: 76
162
+ 2023-02-19 10:24:50,118 32k INFO ====> Epoch: 77
163
+ 2023-02-19 10:25:09,788 32k INFO ====> Epoch: 78
164
+ 2023-02-19 10:25:29,434 32k INFO ====> Epoch: 79
165
+ 2023-02-19 10:25:49,013 32k INFO ====> Epoch: 80
166
+ 2023-02-19 10:26:08,630 32k INFO ====> Epoch: 81
167
+ 2023-02-19 10:26:28,322 32k INFO ====> Epoch: 82
168
+ 2023-02-19 10:26:47,986 32k INFO ====> Epoch: 83
169
+ 2023-02-19 10:27:07,609 32k INFO ====> Epoch: 84
170
+ 2023-02-19 10:27:15,126 32k INFO Train Epoch: 85 [21%]
171
+ 2023-02-19 10:27:15,126 32k INFO [2.234614610671997, 2.673915386199951, 15.113679885864258, 20.68456268310547, 0.9050352573394775, 1600, 9.895542831185631e-05]
172
+ 2023-02-19 10:27:27,568 32k INFO ====> Epoch: 85
173
+ 2023-02-19 10:27:47,162 32k INFO ====> Epoch: 86
174
+ 2023-02-19 10:28:06,803 32k INFO ====> Epoch: 87
175
+ 2023-02-19 10:28:26,491 32k INFO ====> Epoch: 88
176
+ 2023-02-19 10:28:46,205 32k INFO ====> Epoch: 89
177
+ 2023-02-19 10:29:05,923 32k INFO ====> Epoch: 90
178
+ 2023-02-19 10:29:25,543 32k INFO ====> Epoch: 91
179
+ 2023-02-19 10:29:45,199 32k INFO ====> Epoch: 92
180
+ 2023-02-19 10:30:04,872 32k INFO ====> Epoch: 93
181
+ 2023-02-19 10:30:24,573 32k INFO ====> Epoch: 94
182
+ 2023-02-19 10:30:40,658 32k INFO Train Epoch: 95 [74%]
183
+ 2023-02-19 10:30:40,658 32k INFO [2.3925275802612305, 2.410752773284912, 16.29819679260254, 21.02007484436035, 1.3434288501739502, 1800, 9.883180358131438e-05]
184
+ 2023-02-19 10:30:44,524 32k INFO ====> Epoch: 95
185
+ 2023-02-19 10:31:04,176 32k INFO ====> Epoch: 96
186
+ 2023-02-19 10:31:23,746 32k INFO ====> Epoch: 97
187
+ 2023-02-19 10:31:43,345 32k INFO ====> Epoch: 98
188
+ 2023-02-19 10:32:02,965 32k INFO ====> Epoch: 99
189
+ 2023-02-19 10:32:22,613 32k INFO ====> Epoch: 100
190
+ 2023-02-19 10:32:42,215 32k INFO ====> Epoch: 101
191
+ 2023-02-19 10:33:01,781 32k INFO ====> Epoch: 102
192
+ 2023-02-19 10:33:21,347 32k INFO ====> Epoch: 103
193
+ 2023-02-19 10:33:40,936 32k INFO ====> Epoch: 104
194
+ 2023-02-19 10:34:00,582 32k INFO ====> Epoch: 105
195
+ 2023-02-19 10:34:08,972 32k INFO Train Epoch: 106 [26%]
196
+ 2023-02-19 10:34:08,972 32k INFO [2.4520838260650635, 2.415198564529419, 12.142949104309082, 16.184589385986328, 0.6698657274246216, 2000, 9.86959947531291e-05]
197
+ 2023-02-19 10:34:13,205 32k INFO Saving model and optimizer state at iteration 106 to ./logs\32k\G_2000.pth
198
+ 2023-02-19 10:34:31,330 32k INFO Saving model and optimizer state at iteration 106 to ./logs\32k\D_2000.pth
199
+ 2023-02-19 10:34:46,550 32k INFO ====> Epoch: 106
200
+ 2023-02-19 10:35:06,128 32k INFO ====> Epoch: 107
201
+ 2023-02-19 10:35:25,770 32k INFO ====> Epoch: 108
202
+ 2023-02-19 10:35:45,316 32k INFO ====> Epoch: 109
203
+ 2023-02-19 10:36:04,886 32k INFO ====> Epoch: 110
204
+ 2023-02-19 10:36:24,494 32k INFO ====> Epoch: 111
205
+ 2023-02-19 10:36:44,060 32k INFO ====> Epoch: 112
206
+ 2023-02-19 10:37:03,612 32k INFO ====> Epoch: 113
207
+ 2023-02-19 10:37:23,126 32k INFO ====> Epoch: 114
208
+ 2023-02-19 10:37:42,791 32k INFO ====> Epoch: 115
209
+ 2023-02-19 10:37:59,739 32k INFO Train Epoch: 116 [79%]
210
+ 2023-02-19 10:37:59,740 32k INFO [2.173581600189209, 2.597672939300537, 19.673391342163086, 20.529300689697266, 0.6353464722633362, 2200, 9.857269413218213e-05]
211
+ 2023-02-19 10:38:02,696 32k INFO ====> Epoch: 116
212
+ 2023-02-19 10:38:22,357 32k INFO ====> Epoch: 117
213
+ 2023-02-19 10:38:42,132 32k INFO ====> Epoch: 118
214
+ 2023-02-19 10:39:01,840 32k INFO ====> Epoch: 119
215
+ 2023-02-19 10:39:21,476 32k INFO ====> Epoch: 120
216
+ 2023-02-19 10:39:41,098 32k INFO ====> Epoch: 121
217
+ 2023-02-19 10:40:00,770 32k INFO ====> Epoch: 122
218
+ 2023-02-19 10:40:20,435 32k INFO ====> Epoch: 123
219
+ 2023-02-19 10:40:40,053 32k INFO ====> Epoch: 124
220
+ 2023-02-19 10:40:59,685 32k INFO ====> Epoch: 125
221
+ 2023-02-19 10:41:19,254 32k INFO ====> Epoch: 126
222
+ 2023-02-19 10:41:28,468 32k INFO Train Epoch: 127 [32%]
223
+ 2023-02-19 10:41:28,468 32k INFO [2.2418031692504883, 2.729581356048584, 17.634613037109375, 18.02391815185547, 0.39771148562431335, 2400, 9.84372413569007e-05]
224
+ 2023-02-19 10:41:39,158 32k INFO ====> Epoch: 127
225
+ 2023-02-19 10:41:58,736 32k INFO ====> Epoch: 128
226
+ 2023-02-19 10:42:18,349 32k INFO ====> Epoch: 129
227
+ 2023-02-19 10:42:37,898 32k INFO ====> Epoch: 130
228
+ 2023-02-19 10:42:57,642 32k INFO ====> Epoch: 131
229
+ 2023-02-19 10:43:17,176 32k INFO ====> Epoch: 132
230
+ 2023-02-19 10:43:36,760 32k INFO ====> Epoch: 133
231
+ 2023-02-19 10:43:56,375 32k INFO ====> Epoch: 134
232
+ 2023-02-19 10:44:15,877 32k INFO ====> Epoch: 135
233
+ 2023-02-19 10:44:35,387 32k INFO ====> Epoch: 136
234
+ 2023-02-19 10:44:53,146 32k INFO Train Epoch: 137 [84%]
235
+ 2023-02-19 10:44:53,146 32k INFO [1.9678010940551758, 2.595189094543457, 15.501832962036133, 17.879207611083984, 0.4402991235256195, 2600, 9.831426399582366e-05]
236
+ 2023-02-19 10:44:55,266 32k INFO ====> Epoch: 137
237
+ 2023-02-19 10:45:14,872 32k INFO ====> Epoch: 138
238
+ 2023-02-19 10:45:34,425 32k INFO ====> Epoch: 139
239
+ 2023-02-19 10:45:53,939 32k INFO ====> Epoch: 140
240
+ 2023-02-19 10:46:13,513 32k INFO ====> Epoch: 141
241
+ 2023-02-19 10:46:33,087 32k INFO ====> Epoch: 142
242
+ 2023-02-19 10:46:52,703 32k INFO ====> Epoch: 143
243
+ 2023-02-19 10:47:12,387 32k INFO ====> Epoch: 144
244
+ 2023-02-19 10:47:31,975 32k INFO ====> Epoch: 145
245
+ 2023-02-19 10:47:51,629 32k INFO ====> Epoch: 146
246
+ 2023-02-19 10:48:11,263 32k INFO ====> Epoch: 147
247
+ 2023-02-19 10:48:21,336 32k INFO Train Epoch: 148 [37%]
248
+ 2023-02-19 10:48:21,336 32k INFO [2.5357589721679688, 2.358914613723755, 13.429749488830566, 18.84111785888672, 1.1937034130096436, 2800, 9.817916633997459e-05]
249
+ 2023-02-19 10:48:31,130 32k INFO ====> Epoch: 148
250
+ 2023-02-19 10:48:50,747 32k INFO ====> Epoch: 149
251
+ 2023-02-19 10:49:10,411 32k INFO ====> Epoch: 150
252
+ 2023-02-19 10:49:29,989 32k INFO ====> Epoch: 151
253
+ 2023-02-19 10:49:49,583 32k INFO ====> Epoch: 152
254
+ 2023-02-19 10:50:09,163 32k INFO ====> Epoch: 153
255
+ 2023-02-19 10:50:28,800 32k INFO ====> Epoch: 154
256
+ 2023-02-19 10:50:48,404 32k INFO ====> Epoch: 155
257
+ 2023-02-19 10:51:08,009 32k INFO ====> Epoch: 156
258
+ 2023-02-19 10:51:27,600 32k INFO ====> Epoch: 157
259
+ 2023-02-19 10:51:46,235 32k INFO Train Epoch: 158 [89%]
260
+ 2023-02-19 10:51:46,236 32k INFO [2.284935712814331, 2.6029856204986572, 16.011905670166016, 19.070634841918945, 0.9385358095169067, 3000, 9.80565113912702e-05]
261
+ 2023-02-19 10:51:50,428 32k INFO Saving model and optimizer state at iteration 158 to ./logs\32k\G_3000.pth
262
+ 2023-02-19 10:52:08,420 32k INFO Saving model and optimizer state at iteration 158 to ./logs\32k\D_3000.pth
263
+ 2023-02-19 10:52:13,226 32k INFO ====> Epoch: 158
264
+ 2023-02-19 10:52:32,753 32k INFO ====> Epoch: 159
265
+ 2023-02-19 10:52:52,288 32k INFO ====> Epoch: 160
266
+ 2023-02-19 10:53:11,815 32k INFO ====> Epoch: 161
267
+ 2023-02-19 10:53:31,531 32k INFO ====> Epoch: 162
268
+ 2023-02-19 10:53:51,096 32k INFO ====> Epoch: 163
269
+ 2023-02-19 10:54:10,786 32k INFO ====> Epoch: 164
270
+ 2023-02-19 10:54:30,334 32k INFO ====> Epoch: 165
271
+ 2023-02-19 10:54:49,856 32k INFO ====> Epoch: 166
272
+ 2023-02-19 10:55:09,469 32k INFO ====> Epoch: 167
273
+ 2023-02-19 10:55:29,052 32k INFO ====> Epoch: 168
274
+ 2023-02-19 10:55:39,985 32k INFO Train Epoch: 169 [42%]
275
+ 2023-02-19 10:55:39,985 32k INFO [2.055294990539551, 2.645547389984131, 18.572147369384766, 21.72458839416504, 0.7422290444374084, 3200, 9.792176792382932e-05]
276
+ 2023-02-19 10:55:48,948 32k INFO ====> Epoch: 169
277
+ 2023-02-19 10:56:08,592 32k INFO ====> Epoch: 170
278
+ 2023-02-19 10:56:28,191 32k INFO ====> Epoch: 171
279
+ 2023-02-19 10:56:47,791 32k INFO ====> Epoch: 172
280
+ 2023-02-19 10:57:07,401 32k INFO ====> Epoch: 173
281
+ 2023-02-19 10:57:26,913 32k INFO ====> Epoch: 174
282
+ 2023-02-19 10:57:46,480 32k INFO ====> Epoch: 175
283
+ 2023-02-19 10:58:06,125 32k INFO ====> Epoch: 176
284
+ 2023-02-19 10:58:25,833 32k INFO ====> Epoch: 177
285
+ 2023-02-19 10:58:45,438 32k INFO ====> Epoch: 178
286
+ 2023-02-19 10:59:04,582 32k INFO Train Epoch: 179 [95%]
287
+ 2023-02-19 10:59:04,583 32k INFO [2.4237661361694336, 2.700900077819824, 12.830799102783203, 15.212872505187988, 0.817108690738678, 3400, 9.779943454222217e-05]
288
+ 2023-02-19 10:59:05,360 32k INFO ====> Epoch: 179
289
+ 2023-02-19 10:59:24,965 32k INFO ====> Epoch: 180
290
+ 2023-02-19 10:59:44,593 32k INFO ====> Epoch: 181
291
+ 2023-02-19 11:00:04,235 32k INFO ====> Epoch: 182
292
+ 2023-02-19 11:00:23,857 32k INFO ====> Epoch: 183
293
+ 2023-02-19 11:00:43,474 32k INFO ====> Epoch: 184
294
+ 2023-02-19 11:01:03,074 32k INFO ====> Epoch: 185
295
+ 2023-02-19 11:01:22,689 32k INFO ====> Epoch: 186
296
+ 2023-02-19 11:01:42,329 32k INFO ====> Epoch: 187
297
+ 2023-02-19 11:02:01,887 32k INFO ====> Epoch: 188
298
+ 2023-02-19 11:02:21,485 32k INFO ====> Epoch: 189
299
+ 2023-02-19 11:02:33,363 32k INFO Train Epoch: 190 [47%]
300
+ 2023-02-19 11:02:33,363 32k INFO [1.858404278755188, 3.373487949371338, 13.83063793182373, 16.426828384399414, 0.5386475324630737, 3600, 9.766504433460612e-05]
301
+ 2023-02-19 11:02:41,573 32k INFO ====> Epoch: 190
302
+ 2023-02-19 11:03:01,193 32k INFO ====> Epoch: 191
303
+ 2023-02-19 11:03:20,789 32k INFO ====> Epoch: 192
304
+ 2023-02-19 11:03:40,453 32k INFO ====> Epoch: 193
305
+ 2023-02-19 11:04:00,059 32k INFO ====> Epoch: 194
306
+ 2023-02-19 11:04:19,651 32k INFO ====> Epoch: 195
307
+ 2023-02-19 11:04:39,248 32k INFO ====> Epoch: 196
308
+ 2023-02-19 11:04:58,894 32k INFO ====> Epoch: 197
309
+ 2023-02-19 11:05:18,520 32k INFO ====> Epoch: 198
310
+ 2023-02-19 11:05:38,110 32k INFO ====> Epoch: 199
311
+ 2023-02-19 11:05:57,738 32k INFO ====> Epoch: 200
312
+ 2023-02-19 11:06:01,790 32k INFO Train Epoch: 201 [0%]
313
+ 2023-02-19 11:06:01,790 32k INFO [2.286409854888916, 2.695997714996338, 20.394229888916016, 19.332231521606445, 0.7787021994590759, 3800, 9.753083879807726e-05]
314
+ 2023-02-19 11:06:17,635 32k INFO ====> Epoch: 201
315
+ 2023-02-19 11:06:37,273 32k INFO ====> Epoch: 202
316
+ 2023-02-19 11:06:56,889 32k INFO ====> Epoch: 203
317
+ 2023-02-19 11:07:16,485 32k INFO ====> Epoch: 204
318
+ 2023-02-19 11:07:36,099 32k INFO ====> Epoch: 205
319
+ 2023-02-19 11:07:55,728 32k INFO ====> Epoch: 206
320
+ 2023-02-19 11:08:15,343 32k INFO ====> Epoch: 207
321
+ 2023-02-19 11:08:34,891 32k INFO ====> Epoch: 208
322
+ 2023-02-19 11:08:54,540 32k INFO ====> Epoch: 209
323
+ 2023-02-19 11:09:14,170 32k INFO ====> Epoch: 210
324
+ 2023-02-19 11:09:26,797 32k INFO Train Epoch: 211 [53%]
325
+ 2023-02-19 11:09:26,798 32k INFO [2.2917189598083496, 2.7440385818481445, 15.518340110778809, 16.26446533203125, 0.6934877038002014, 4000, 9.740899380309685e-05]
326
+ 2023-02-19 11:09:31,011 32k INFO Saving model and optimizer state at iteration 211 to ./logs\32k\G_4000.pth
327
+ 2023-02-19 11:09:51,469 32k INFO Saving model and optimizer state at iteration 211 to ./logs\32k\D_4000.pth
328
+ 2023-02-19 11:10:02,495 32k INFO ====> Epoch: 211
329
+ 2023-02-19 11:10:22,019 32k INFO ====> Epoch: 212
330
+ 2023-02-19 11:10:41,554 32k INFO ====> Epoch: 213
331
+ 2023-02-19 11:11:01,073 32k INFO ====> Epoch: 214
332
+ 2023-02-19 11:11:20,612 32k INFO ====> Epoch: 215
333
+ 2023-02-19 11:11:40,229 32k INFO ====> Epoch: 216
334
+ 2023-02-19 11:11:59,823 32k INFO ====> Epoch: 217
335
+ 2023-02-19 11:12:19,432 32k INFO ====> Epoch: 218
336
+ 2023-02-19 11:12:38,982 32k INFO ====> Epoch: 219
337
+ 2023-02-19 11:12:58,555 32k INFO ====> Epoch: 220
338
+ 2023-02-19 11:13:18,155 32k INFO ====> Epoch: 221
339
+ 2023-02-19 11:13:23,102 32k INFO Train Epoch: 222 [5%]
340
+ 2023-02-19 11:13:23,102 32k INFO [2.2692172527313232, 2.6678965091705322, 17.69780731201172, 20.136995315551758, 0.6864567995071411, 4200, 9.727514011608789e-05]
341
+ 2023-02-19 11:13:38,082 32k INFO ====> Epoch: 222
342
+ 2023-02-19 11:13:57,751 32k INFO ====> Epoch: 223
343
+ 2023-02-19 11:14:17,317 32k INFO ====> Epoch: 224
344
+ 2023-02-19 11:14:36,905 32k INFO ====> Epoch: 225
345
+ 2023-02-19 11:14:56,538 32k INFO ====> Epoch: 226
346
+ 2023-02-19 11:15:16,180 32k INFO ====> Epoch: 227
347
+ 2023-02-19 11:15:35,773 32k INFO ====> Epoch: 228
348
+ 2023-02-19 11:15:55,427 32k INFO ====> Epoch: 229
349
+ 2023-02-19 11:16:15,006 32k INFO ====> Epoch: 230
350
+ 2023-02-19 11:16:34,619 32k INFO ====> Epoch: 231
351
+ 2023-02-19 11:16:48,169 32k INFO Train Epoch: 232 [58%]
352
+ 2023-02-19 11:16:48,170 32k INFO [2.2375569343566895, 2.629099130630493, 15.8519868850708, 17.997573852539062, 0.4304458200931549, 4400, 9.715361456473177e-05]
353
+ 2023-02-19 11:16:54,566 32k INFO ====> Epoch: 232
354
+ 2023-02-19 11:17:14,203 32k INFO ====> Epoch: 233
355
+ 2023-02-19 11:17:33,790 32k INFO ====> Epoch: 234
356
+ 2023-02-19 11:17:53,406 32k INFO ====> Epoch: 235
357
+ 2023-02-19 11:18:13,072 32k INFO ====> Epoch: 236
358
+ 2023-02-19 11:18:32,696 32k INFO ====> Epoch: 237
359
+ 2023-02-19 11:18:52,331 32k INFO ====> Epoch: 238
360
+ 2023-02-19 11:19:11,901 32k INFO ====> Epoch: 239
361
+ 2023-02-19 11:19:31,520 32k INFO ====> Epoch: 240
362
+ 2023-02-19 11:19:51,132 32k INFO ====> Epoch: 241
363
+ 2023-02-19 11:20:10,731 32k INFO ====> Epoch: 242
364
+ 2023-02-19 11:20:16,470 32k INFO Train Epoch: 243 [11%]
365
+ 2023-02-19 11:20:16,470 32k INFO [2.1481809616088867, 2.5824615955352783, 14.348868370056152, 17.293001174926758, 0.6088849902153015, 4600, 9.702011180479129e-05]
366
+ 2023-02-19 11:20:30,580 32k INFO ====> Epoch: 243
367
+ 2023-02-19 11:20:50,191 32k INFO ====> Epoch: 244
368
+ 2023-02-19 11:21:09,779 32k INFO ====> Epoch: 245
369
+ 2023-02-19 11:21:29,444 32k INFO ====> Epoch: 246
370
+ 2023-02-19 11:21:49,014 32k INFO ====> Epoch: 247
371
+ 2023-02-19 11:22:08,589 32k INFO ====> Epoch: 248
372
+ 2023-02-19 11:22:28,235 32k INFO ====> Epoch: 249
373
+ 2023-02-19 11:22:47,886 32k INFO ====> Epoch: 250
374
+ 2023-02-19 11:23:07,478 32k INFO ====> Epoch: 251
375
+ 2023-02-19 11:23:27,108 32k INFO ====> Epoch: 252
376
+ 2023-02-19 11:23:41,516 32k INFO Train Epoch: 253 [63%]
377
+ 2023-02-19 11:23:41,516 32k INFO [2.2075626850128174, 2.759037733078003, 16.229446411132812, 19.35388946533203, 0.7824491858482361, 4800, 9.689890485956725e-05]
378
+ 2023-02-19 11:23:47,056 32k INFO ====> Epoch: 253
379
+ 2023-02-19 11:24:06,652 32k INFO ====> Epoch: 254
380
+ 2023-02-19 11:24:26,228 32k INFO ====> Epoch: 255
381
+ 2023-02-19 11:24:45,885 32k INFO ====> Epoch: 256
382
+ 2023-02-19 11:25:05,450 32k INFO ====> Epoch: 257
383
+ 2023-02-19 11:25:25,062 32k INFO ====> Epoch: 258
384
+ 2023-02-19 11:25:44,680 32k INFO ====> Epoch: 259
385
+ 2023-02-19 11:26:04,299 32k INFO ====> Epoch: 260
386
+ 2023-02-19 11:26:23,879 32k INFO ====> Epoch: 261
387
+ 2023-02-19 11:26:43,517 32k INFO ====> Epoch: 262
388
+ 2023-02-19 11:27:03,127 32k INFO ====> Epoch: 263
389
+ 2023-02-19 11:27:09,821 32k INFO Train Epoch: 264 [16%]
390
+ 2023-02-19 11:27:09,821 32k INFO [2.3156111240386963, 2.653826951980591, 14.277311325073242, 16.898771286010742, 0.792119026184082, 5000, 9.676575210666227e-05]
391
+ 2023-02-19 11:27:14,004 32k INFO Saving model and optimizer state at iteration 264 to ./logs\32k\G_5000.pth
392
+ 2023-02-19 11:27:31,625 32k INFO Saving model and optimizer state at iteration 264 to ./logs\32k\D_5000.pth
393
+ 2023-02-19 11:27:48,527 32k INFO ====> Epoch: 264
394
+ 2023-02-19 11:28:08,128 32k INFO ====> Epoch: 265
395
+ 2023-02-19 11:28:27,718 32k INFO ====> Epoch: 266
396
+ 2023-02-19 11:28:47,282 32k INFO ====> Epoch: 267
397
+ 2023-02-19 11:29:06,849 32k INFO ====> Epoch: 268
398
+ 2023-02-19 11:29:26,398 32k INFO ====> Epoch: 269
399
+ 2023-02-19 11:29:45,966 32k INFO ====> Epoch: 270
400
+ 2023-02-19 11:30:05,588 32k INFO ====> Epoch: 271
401
+ 2023-02-19 11:30:25,210 32k INFO ====> Epoch: 272
402
+ 2023-02-19 11:30:44,805 32k INFO ====> Epoch: 273
403
+ 2023-02-19 11:31:00,163 32k INFO Train Epoch: 274 [68%]
404
+ 2023-02-19 11:31:00,163 32k INFO [2.5202348232269287, 2.6853830814361572, 12.198919296264648, 17.470657348632812, 1.010284423828125, 5200, 9.664486293227385e-05]
405
+ 2023-02-19 11:31:04,871 32k INFO ====> Epoch: 274
406
+ 2023-02-19 11:31:24,524 32k INFO ====> Epoch: 275
407
+ 2023-02-19 11:31:44,192 32k INFO ====> Epoch: 276
408
+ 2023-02-19 11:32:03,771 32k INFO ====> Epoch: 277
409
+ 2023-02-19 11:32:23,441 32k INFO ====> Epoch: 278
410
+ 2023-02-19 11:32:43,028 32k INFO ====> Epoch: 279
411
+ 2023-02-19 11:33:02,669 32k INFO ====> Epoch: 280
412
+ 2023-02-19 11:33:22,327 32k INFO ====> Epoch: 281
413
+ 2023-02-19 11:33:41,904 32k INFO ====> Epoch: 282
414
+ 2023-02-19 11:34:01,510 32k INFO ====> Epoch: 283
415
+ 2023-02-19 11:34:21,149 32k INFO ====> Epoch: 284
416
+ 2023-02-19 11:34:28,645 32k INFO Train Epoch: 285 [21%]
417
+ 2023-02-19 11:34:28,645 32k INFO [2.1849722862243652, 2.6742019653320312, 17.45437240600586, 19.302379608154297, 0.47049564123153687, 5400, 9.651205926878348e-05]
418
+ 2023-02-19 11:34:41,074 32k INFO ====> Epoch: 285
419
+ 2023-02-19 11:35:00,663 32k INFO ====> Epoch: 286
420
+ 2023-02-19 11:35:20,204 32k INFO ====> Epoch: 287
421
+ 2023-02-19 11:35:39,792 32k INFO ====> Epoch: 288
422
+ 2023-02-19 11:35:59,412 32k INFO ====> Epoch: 289
423
+ 2023-02-19 11:36:19,030 32k INFO ====> Epoch: 290
424
+ 2023-02-19 11:36:38,610 32k INFO ====> Epoch: 291
425
+ 2023-02-19 11:36:58,221 32k INFO ====> Epoch: 292
426
+ 2023-02-19 11:37:17,873 32k INFO ====> Epoch: 293
427
+ 2023-02-19 11:37:37,744 32k INFO ====> Epoch: 294
428
+ 2023-02-19 11:37:53,973 32k INFO Train Epoch: 295 [74%]
429
+ 2023-02-19 11:37:53,973 32k INFO [2.275301933288574, 2.737536907196045, 16.912981033325195, 20.602113723754883, 1.1094117164611816, 5600, 9.639148703212408e-05]
430
+ 2023-02-19 11:37:57,829 32k INFO ====> Epoch: 295
431
+ 2023-02-19 11:38:17,495 32k INFO ====> Epoch: 296
432
+ 2023-02-19 11:38:37,068 32k INFO ====> Epoch: 297
433
+ 2023-02-19 11:38:56,622 32k INFO ====> Epoch: 298
434
+ 2023-02-19 11:39:16,278 32k INFO ====> Epoch: 299
435
+ 2023-02-19 11:39:35,894 32k INFO ====> Epoch: 300
436
+ 2023-02-19 11:39:55,537 32k INFO ====> Epoch: 301
437
+ 2023-02-19 11:40:15,105 32k INFO ====> Epoch: 302
438
+ 2023-02-19 11:40:34,680 32k INFO ====> Epoch: 303
439
+ 2023-02-19 11:40:54,337 32k INFO ====> Epoch: 304
440
+ 2023-02-19 11:41:13,926 32k INFO ====> Epoch: 305
441
+ 2023-02-19 11:41:22,265 32k INFO Train Epoch: 306 [26%]
442
+ 2023-02-19 11:41:22,266 32k INFO [2.1130294799804688, 2.605156660079956, 13.737504005432129, 18.2040958404541, 0.6517429351806641, 5800, 9.625903154283315e-05]
443
+ 2023-02-19 11:41:33,904 32k INFO ====> Epoch: 306
444
+ 2023-02-19 11:41:53,551 32k INFO ====> Epoch: 307
445
+ 2023-02-19 11:42:13,197 32k INFO ====> Epoch: 308
446
+ 2023-02-19 11:42:32,740 32k INFO ====> Epoch: 309
447
+ 2023-02-19 11:42:52,382 32k INFO ====> Epoch: 310
448
+ 2023-02-19 11:43:12,004 32k INFO ====> Epoch: 311
449
+ 2023-02-19 11:43:31,599 32k INFO ====> Epoch: 312
450
+ 2023-02-19 11:43:51,218 32k INFO ====> Epoch: 313
451
+ 2023-02-19 11:44:10,806 32k INFO ====> Epoch: 314
452
+ 2023-02-19 11:44:30,411 32k INFO ====> Epoch: 315
453
+ 2023-02-19 11:44:47,303 32k INFO Train Epoch: 316 [79%]
454
+ 2023-02-19 11:44:47,303 32k INFO [1.8626766204833984, 2.7689990997314453, 22.44615364074707, 18.596677780151367, 0.9108448028564453, 6000, 9.613877541298036e-05]
455
+ 2023-02-19 11:44:51,515 32k INFO Saving model and optimizer state at iteration 316 to ./logs\32k\G_6000.pth
456
+ 2023-02-19 11:45:09,459 32k INFO Saving model and optimizer state at iteration 316 to ./logs\32k\D_6000.pth
457
+ 2023-02-19 11:45:15,966 32k INFO ====> Epoch: 316
458
+ 2023-02-19 11:45:35,566 32k INFO ====> Epoch: 317
459
+ 2023-02-19 11:45:55,162 32k INFO ====> Epoch: 318
460
+ 2023-02-19 11:46:14,676 32k INFO ====> Epoch: 319
461
+ 2023-02-19 11:46:34,275 32k INFO ====> Epoch: 320
462
+ 2023-02-19 11:46:53,846 32k INFO ====> Epoch: 321
463
+ 2023-02-19 11:47:13,481 32k INFO ====> Epoch: 322
464
+ 2023-02-19 11:47:33,118 32k INFO ====> Epoch: 323
465
+ 2023-02-19 11:47:52,781 32k INFO ====> Epoch: 324
466
+ 2023-02-19 11:48:12,412 32k INFO ====> Epoch: 325
467
+ 2023-02-19 11:48:31,983 32k INFO ====> Epoch: 326
468
+ 2023-02-19 11:48:41,283 32k INFO Train Epoch: 327 [32%]
469
+ 2023-02-19 11:48:41,283 32k INFO [2.134446620941162, 2.5606751441955566, 17.715618133544922, 18.039941787719727, 0.7827563285827637, 6200, 9.600666718507311e-05]
470
+ 2023-02-19 11:48:51,957 32k INFO ====> Epoch: 327
471
+ 2023-02-19 11:49:11,559 32k INFO ====> Epoch: 328
472
+ 2023-02-19 11:49:31,233 32k INFO ====> Epoch: 329
473
+ 2023-02-19 11:49:50,840 32k INFO ====> Epoch: 330
474
+ 2023-02-19 11:50:10,505 32k INFO ====> Epoch: 331
475
+ 2023-02-19 11:50:30,086 32k INFO ====> Epoch: 332
476
+ 2023-02-19 11:50:49,767 32k INFO ====> Epoch: 333
477
+ 2023-02-19 11:51:09,467 32k INFO ====> Epoch: 334
478
+ 2023-02-19 11:51:29,060 32k INFO ====> Epoch: 335
479
+ 2023-02-19 11:51:48,709 32k INFO ====> Epoch: 336
480
+ 2023-02-19 11:52:06,472 32k INFO Train Epoch: 337 [84%]
481
+ 2023-02-19 11:52:06,472 32k INFO [2.3614232540130615, 2.127523183822632, 13.096696853637695, 15.430811882019043, 1.0329926013946533, 6400, 9.588672633328296e-05]
482
+ 2023-02-19 11:52:08,588 32k INFO ====> Epoch: 337
483
+ 2023-02-19 11:52:28,158 32k INFO ====> Epoch: 338
484
+ 2023-02-19 11:52:47,762 32k INFO ====> Epoch: 339
485
+ 2023-02-19 11:53:07,351 32k INFO ====> Epoch: 340
486
+ 2023-02-19 11:53:26,929 32k INFO ====> Epoch: 341
487
+ 2023-02-19 11:53:46,569 32k INFO ====> Epoch: 342
488
+ 2023-02-19 11:54:06,210 32k INFO ====> Epoch: 343
489
+ 2023-02-19 11:54:25,837 32k INFO ====> Epoch: 344
490
+ 2023-02-19 11:54:45,483 32k INFO ====> Epoch: 345
491
+ 2023-02-19 11:55:05,098 32k INFO ====> Epoch: 346
492
+ 2023-02-19 11:55:24,762 32k INFO ====> Epoch: 347
493
+ 2023-02-19 11:55:34,848 32k INFO Train Epoch: 348 [37%]
494
+ 2023-02-19 11:55:34,849 32k INFO [2.5325193405151367, 2.0467236042022705, 9.755393028259277, 12.007466316223145, 0.2873714864253998, 6600, 9.575496445633683e-05]
495
+ 2023-02-19 11:55:44,674 32k INFO ====> Epoch: 348
496
+ 2023-02-19 11:56:04,439 32k INFO ====> Epoch: 349
497
+ 2023-02-19 11:56:24,075 32k INFO ====> Epoch: 350
498
+ 2023-02-19 11:56:43,652 32k INFO ====> Epoch: 351
499
+ 2023-02-19 11:57:03,215 32k INFO ====> Epoch: 352
500
+ 2023-02-19 11:57:22,843 32k INFO ====> Epoch: 353
501
+ 2023-02-19 11:57:42,508 32k INFO ====> Epoch: 354
502
+ 2023-02-19 11:58:02,106 32k INFO ====> Epoch: 355
503
+ 2023-02-19 11:58:21,710 32k INFO ====> Epoch: 356
504
+ 2023-02-19 11:58:41,438 32k INFO ====> Epoch: 357
505
+ 2023-02-19 11:59:00,100 32k INFO Train Epoch: 358 [89%]
506
+ 2023-02-19 11:59:00,101 32k INFO [2.309570074081421, 2.5850276947021484, 13.4173583984375, 16.9825382232666, 0.4784981906414032, 6800, 9.56353380560381e-05]
507
+ 2023-02-19 11:59:01,366 32k INFO ====> Epoch: 358
508
+ 2023-02-19 11:59:20,928 32k INFO ====> Epoch: 359
509
+ 2023-02-19 11:59:40,589 32k INFO ====> Epoch: 360
510
+ 2023-02-19 12:00:00,179 32k INFO ====> Epoch: 361
511
+ 2023-02-19 12:00:19,818 32k INFO ====> Epoch: 362
512
+ 2023-02-19 12:00:39,433 32k INFO ====> Epoch: 363
513
+ 2023-02-19 12:00:59,077 32k INFO ====> Epoch: 364
514
+ 2023-02-19 12:01:18,665 32k INFO ====> Epoch: 365
515
+ 2023-02-19 12:01:38,287 32k INFO ====> Epoch: 366
516
+ 2023-02-19 12:01:57,919 32k INFO ====> Epoch: 367
517
+ 2023-02-19 12:02:17,535 32k INFO ====> Epoch: 368
518
+ 2023-02-19 12:02:28,494 32k INFO Train Epoch: 369 [42%]
519
+ 2023-02-19 12:02:28,494 32k INFO [2.1438865661621094, 2.569798231124878, 18.708538055419922, 19.017616271972656, 0.3679341971874237, 7000, 9.550392162201736e-05]
520
+ 2023-02-19 12:02:32,717 32k INFO Saving model and optimizer state at iteration 369 to ./logs\32k\G_7000.pth
521
+ 2023-02-19 12:02:50,778 32k INFO Saving model and optimizer state at iteration 369 to ./logs\32k\D_7000.pth
522
+ 2023-02-19 12:03:03,651 32k INFO ====> Epoch: 369
523
+ 2023-02-19 12:03:23,235 32k INFO ====> Epoch: 370
524
+ 2023-02-19 12:03:42,803 32k INFO ====> Epoch: 371
525
+ 2023-02-19 12:04:02,411 32k INFO ====> Epoch: 372
526
+ 2023-02-19 12:04:21,953 32k INFO ====> Epoch: 373
527
+ 2023-02-19 12:04:41,504 32k INFO ====> Epoch: 374
528
+ 2023-02-19 12:05:01,114 32k INFO ====> Epoch: 375
529
+ 2023-02-19 12:05:20,776 32k INFO ====> Epoch: 376
530
+ 2023-02-19 12:05:40,345 32k INFO ====> Epoch: 377
531
+ 2023-02-19 12:05:59,933 32k INFO ====> Epoch: 378
532
+ 2023-02-19 12:06:19,091 32k INFO Train Epoch: 379 [95%]
533
+ 2023-02-19 12:06:19,091 32k INFO [2.0112531185150146, 3.151000499725342, 21.729772567749023, 17.626426696777344, 0.05288940668106079, 7200, 9.538460884880585e-05]
534
+ 2023-02-19 12:06:19,867 32k INFO ====> Epoch: 379
535
+ 2023-02-19 12:06:39,460 32k INFO ====> Epoch: 380
536
+ 2023-02-19 12:06:59,053 32k INFO ====> Epoch: 381
537
+ 2023-02-19 12:07:18,709 32k INFO ====> Epoch: 382
538
+ 2023-02-19 12:07:38,341 32k INFO ====> Epoch: 383
539
+ 2023-02-19 12:07:57,934 32k INFO ====> Epoch: 384
540
+ 2023-02-19 12:08:17,553 32k INFO ====> Epoch: 385
541
+ 2023-02-19 12:08:37,236 32k INFO ====> Epoch: 386
542
+ 2023-02-19 12:08:56,799 32k INFO ====> Epoch: 387
543
+ 2023-02-19 12:09:16,406 32k INFO ====> Epoch: 388
544
+ 2023-02-19 12:09:36,019 32k INFO ====> Epoch: 389
545
+ 2023-02-19 12:09:47,851 32k INFO Train Epoch: 390 [47%]
546
+ 2023-02-19 12:09:47,851 32k INFO [2.3823697566986084, 2.554415702819824, 13.744731903076172, 18.62793731689453, 0.7019649147987366, 7400, 9.525353695205543e-05]
547
+ 2023-02-19 12:09:55,957 32k INFO ====> Epoch: 390
548
+ 2023-02-19 12:10:15,602 32k INFO ====> Epoch: 391
549
+ 2023-02-19 12:10:35,217 32k INFO ====> Epoch: 392
550
+ 2023-02-19 12:10:54,874 32k INFO ====> Epoch: 393
551
+ 2023-02-19 12:11:14,510 32k INFO ====> Epoch: 394
552
+ 2023-02-19 12:11:34,263 32k INFO ====> Epoch: 395
553
+ 2023-02-19 12:11:53,845 32k INFO ====> Epoch: 396
554
+ 2023-02-19 12:12:13,473 32k INFO ====> Epoch: 397
555
+ 2023-02-19 12:12:33,092 32k INFO ====> Epoch: 398
556
+ 2023-02-19 12:12:52,723 32k INFO ====> Epoch: 399
557
+ 2023-02-19 12:13:12,340 32k INFO ====> Epoch: 400
558
+ 2023-02-19 12:13:16,360 32k INFO Train Epoch: 401 [0%]
559
+ 2023-02-19 12:13:16,361 32k INFO [2.060042381286621, 2.767242670059204, 16.21058464050293, 16.564598083496094, 0.580163836479187, 7600, 9.512264516656537e-05]
560
+ 2023-02-19 12:13:32,189 32k INFO ====> Epoch: 401
561
+ 2023-02-19 12:13:51,798 32k INFO ====> Epoch: 402
562
+ 2023-02-19 12:14:11,417 32k INFO ====> Epoch: 403
563
+ 2023-02-19 12:14:31,034 32k INFO ====> Epoch: 404
564
+ 2023-02-19 12:14:50,628 32k INFO ====> Epoch: 405
565
+ 2023-02-19 12:15:10,268 32k INFO ====> Epoch: 406
566
+ 2023-02-19 12:15:29,856 32k INFO ====> Epoch: 407
567
+ 2023-02-19 12:15:49,473 32k INFO ====> Epoch: 408
568
+ 2023-02-19 12:16:09,070 32k INFO ====> Epoch: 409
569
+ 2023-02-19 12:16:28,647 32k INFO ====> Epoch: 410
570
+ 2023-02-19 12:16:41,291 32k INFO Train Epoch: 411 [53%]
571
+ 2023-02-19 12:16:41,291 32k INFO [2.276326894760132, 2.791963815689087, 16.988666534423828, 16.02008819580078, 1.0126944780349731, 7800, 9.500380872092753e-05]
572
+ 2023-02-19 12:16:48,539 32k INFO ====> Epoch: 411
573
+ 2023-02-19 12:17:08,149 32k INFO ====> Epoch: 412
574
+ 2023-02-19 12:17:27,812 32k INFO ====> Epoch: 413
575
+ 2023-02-19 12:17:47,415 32k INFO ====> Epoch: 414
576
+ 2023-02-19 12:18:07,018 32k INFO ====> Epoch: 415
577
+ 2023-02-19 12:18:26,626 32k INFO ====> Epoch: 416
578
+ 2023-02-19 12:18:46,268 32k INFO ====> Epoch: 417
579
+ 2023-02-19 12:19:05,865 32k INFO ====> Epoch: 418
580
+ 2023-02-19 12:19:25,510 32k INFO ====> Epoch: 419
581
+ 2023-02-19 12:19:45,050 32k INFO ====> Epoch: 420
582
+ 2023-02-19 12:20:04,641 32k INFO ====> Epoch: 421
583
+ 2023-02-19 12:20:09,552 32k INFO Train Epoch: 422 [5%]
584
+ 2023-02-19 12:20:09,552 32k INFO [1.8605238199234009, 2.7951276302337646, 22.017553329467773, 20.881940841674805, 0.5991621017456055, 8000, 9.487326009722552e-05]
585
+ 2023-02-19 12:20:13,861 32k INFO Saving model and optimizer state at iteration 422 to ./logs\32k\G_8000.pth
586
+ 2023-02-19 12:20:30,750 32k INFO Saving model and optimizer state at iteration 422 to ./logs\32k\D_8000.pth
587
+ 2023-02-19 12:20:49,367 32k INFO ====> Epoch: 422
588
+ 2023-02-19 12:21:09,253 32k INFO ====> Epoch: 423
589
+ 2023-02-19 12:21:29,092 32k INFO ====> Epoch: 424
590
+ 2023-02-19 12:21:48,850 32k INFO ====> Epoch: 425
591
+ 2023-02-19 12:22:08,448 32k INFO ====> Epoch: 426
592
+ 2023-02-19 12:22:28,085 32k INFO ====> Epoch: 427
593
+ 2023-02-19 12:22:47,686 32k INFO ====> Epoch: 428
594
+ 2023-02-19 12:23:07,278 32k INFO ====> Epoch: 429
595
+ 2023-02-19 12:23:27,118 32k INFO ====> Epoch: 430
596
+ 2023-02-19 12:23:46,825 32k INFO ====> Epoch: 431
597
+ 2023-02-19 12:24:00,324 32k INFO Train Epoch: 432 [58%]
598
+ 2023-02-19 12:24:00,325 32k INFO [2.2748827934265137, 2.393998861312866, 16.518442153930664, 15.991931915283203, 0.6844744086265564, 8200, 9.475473520763392e-05]
599
+ 2023-02-19 12:24:06,743 32k INFO ====> Epoch: 432
600
+ 2023-02-19 12:24:26,417 32k INFO ====> Epoch: 433
601
+ 2023-02-19 12:24:46,429 32k INFO ====> Epoch: 434
602
+ 2023-02-19 12:25:06,352 32k INFO ====> Epoch: 435
603
+ 2023-02-19 12:25:26,166 32k INFO ====> Epoch: 436
604
+ 2023-02-19 12:25:45,962 32k INFO ====> Epoch: 437
605
+ 2023-02-19 12:26:05,572 32k INFO ====> Epoch: 438
606
+ 2023-02-19 12:26:25,223 32k INFO ====> Epoch: 439
607
+ 2023-02-19 12:26:44,804 32k INFO ====> Epoch: 440
608
+ 2023-02-19 12:27:04,427 32k INFO ====> Epoch: 441
609
+ 2023-02-19 12:27:23,994 32k INFO ====> Epoch: 442
610
+ 2023-02-19 12:27:29,761 32k INFO Train Epoch: 443 [11%]
611
+ 2023-02-19 12:27:29,761 32k INFO [2.212078332901001, 2.7991578578948975, 14.290653228759766, 16.723142623901367, 0.758256733417511, 8400, 9.46245288460454e-05]
612
+ 2023-02-19 12:27:43,980 32k INFO ====> Epoch: 443
613
+ 2023-02-19 12:28:03,844 32k INFO ====> Epoch: 444
614
+ 2023-02-19 12:28:23,653 32k INFO ====> Epoch: 445
615
+ 2023-02-19 12:28:43,304 32k INFO ====> Epoch: 446
616
+ 2023-02-19 12:29:03,085 32k INFO ====> Epoch: 447
617
+ 2023-02-19 12:29:22,793 32k INFO ====> Epoch: 448
618
+ 2023-02-19 12:29:42,697 32k INFO ====> Epoch: 449
619
+ 2023-02-19 12:30:02,286 32k INFO ====> Epoch: 450
620
+ 2023-02-19 12:30:21,939 32k INFO ====> Epoch: 451
621
+ 2023-02-19 12:30:41,561 32k INFO ====> Epoch: 452
622
+ 2023-02-19 12:30:55,959 32k INFO Train Epoch: 453 [63%]
623
+ 2023-02-19 12:30:55,960 32k INFO [2.3873302936553955, 2.6133875846862793, 14.57663631439209, 17.228395462036133, 0.6703507900238037, 8600, 9.450631469568687e-05]
624
+ 2023-02-19 12:31:01,484 32k INFO ====> Epoch: 453
625
+ 2023-02-19 12:31:21,352 32k INFO ====> Epoch: 454
626
+ 2023-02-19 12:31:41,004 32k INFO ====> Epoch: 455
627
+ 2023-02-19 12:32:00,663 32k INFO ====> Epoch: 456
628
+ 2023-02-19 12:32:20,262 32k INFO ====> Epoch: 457
629
+ 2023-02-19 12:32:39,921 32k INFO ====> Epoch: 458
630
+ 2023-02-19 12:32:59,815 32k INFO ====> Epoch: 459
631
+ 2023-02-19 12:33:20,886 32k INFO ====> Epoch: 460
632
+ 2023-02-19 12:33:40,723 32k INFO ====> Epoch: 461
633
+ 2023-02-19 12:34:00,374 32k INFO ====> Epoch: 462
634
+ 2023-02-19 12:34:20,007 32k INFO ====> Epoch: 463
635
+ 2023-02-19 12:34:37,407 32k INFO Train Epoch: 464 [16%]
636
+ 2023-02-19 12:34:37,407 32k INFO [3.0064706802368164, 2.5415701866149902, 9.37286376953125, 13.644079208374023, 0.7945896983146667, 8800, 9.437644969889592e-05]
637
+ 2023-02-19 12:34:50,681 32k INFO ====> Epoch: 464
638
+ 2023-02-19 12:35:10,328 32k INFO ====> Epoch: 465
639
+ 2023-02-19 12:35:29,951 32k INFO ====> Epoch: 466
640
+ 2023-02-19 12:35:49,602 32k INFO ====> Epoch: 467
641
+ 2023-02-19 12:36:09,383 32k INFO ====> Epoch: 468
642
+ 2023-02-19 12:36:29,051 32k INFO ====> Epoch: 469
643
+ 2023-02-19 12:36:48,693 32k INFO ====> Epoch: 470
644
+ 2023-02-19 12:37:08,307 32k INFO ====> Epoch: 471
645
+ 2023-02-19 12:37:27,980 32k INFO ====> Epoch: 472
646
+ 2023-02-19 12:37:47,600 32k INFO ====> Epoch: 473
647
+ 2023-02-19 12:38:02,872 32k INFO Train Epoch: 474 [68%]
648
+ 2023-02-19 12:38:02,873 32k INFO [2.2592387199401855, 2.68511962890625, 14.775422096252441, 18.476463317871094, 0.7293793559074402, 9000, 9.425854547309881e-05]
649
+ 2023-02-19 12:38:07,146 32k INFO Saving model and optimizer state at iteration 474 to ./logs\32k\G_9000.pth
650
+ 2023-02-19 12:38:23,693 32k INFO Saving model and optimizer state at iteration 474 to ./logs\32k\D_9000.pth
651
+ 2023-02-19 12:38:31,718 32k INFO ====> Epoch: 474
652
+ 2023-02-19 12:38:51,663 32k INFO ====> Epoch: 475
653
+ 2023-02-19 12:39:11,421 32k INFO ====> Epoch: 476
654
+ 2023-02-19 12:39:31,207 32k INFO ====> Epoch: 477
655
+ 2023-02-19 12:39:50,792 32k INFO ====> Epoch: 478
656
+ 2023-02-19 12:40:10,453 32k INFO ====> Epoch: 479
657
+ 2023-02-19 12:40:30,150 32k INFO ====> Epoch: 480
658
+ 2023-02-19 12:40:49,778 32k INFO ====> Epoch: 481
659
+ 2023-02-19 12:41:09,416 32k INFO ====> Epoch: 482
660
+ 2023-02-19 12:41:29,039 32k INFO ====> Epoch: 483
661
+ 2023-02-19 12:41:48,739 32k INFO ====> Epoch: 484
662
+ 2023-02-19 12:41:56,274 32k INFO Train Epoch: 485 [21%]
663
+ 2023-02-19 12:41:56,274 32k INFO [2.0364489555358887, 2.666236400604248, 15.535277366638184, 17.430566787719727, 0.9094477891921997, 9200, 9.412902094614211e-05]
664
+ 2023-02-19 12:42:08,707 32k INFO ====> Epoch: 485
665
+ 2023-02-19 12:42:28,424 32k INFO ====> Epoch: 486
666
+ 2023-02-19 12:42:48,137 32k INFO ====> Epoch: 487
667
+ 2023-02-19 12:43:07,787 32k INFO ====> Epoch: 488
668
+ 2023-02-19 12:43:27,391 32k INFO ====> Epoch: 489
669
+ 2023-02-19 12:43:47,060 32k INFO ====> Epoch: 490
670
+ 2023-02-19 12:44:06,721 32k INFO ====> Epoch: 491
671
+ 2023-02-19 12:44:26,376 32k INFO ====> Epoch: 492
672
+ 2023-02-19 12:44:46,053 32k INFO ====> Epoch: 493
673
+ 2023-02-19 12:45:05,716 32k INFO ====> Epoch: 494
674
+ 2023-02-19 12:45:21,792 32k INFO Train Epoch: 495 [74%]
675
+ 2023-02-19 12:45:21,793 32k INFO [2.3733603954315186, 2.47238826751709, 12.350341796875, 17.111530303955078, 0.7110298275947571, 9400, 9.401142583237059e-05]
676
+ 2023-02-19 12:45:25,630 32k INFO ====> Epoch: 495
677
+ 2023-02-19 12:45:45,272 32k INFO ====> Epoch: 496
678
+ 2023-02-19 12:46:04,842 32k INFO ====> Epoch: 497
679
+ 2023-02-19 12:46:24,549 32k INFO ====> Epoch: 498
680
+ 2023-02-19 12:46:44,160 32k INFO ====> Epoch: 499
681
+ 2023-02-19 12:47:03,818 32k INFO ====> Epoch: 500
682
+ 2023-02-19 12:47:23,460 32k INFO ====> Epoch: 501
683
+ 2023-02-19 12:47:43,079 32k INFO ====> Epoch: 502
684
+ 2023-02-19 12:48:02,692 32k INFO ====> Epoch: 503
685
+ 2023-02-19 12:48:22,357 32k INFO ====> Epoch: 504
686
+ 2023-02-19 12:48:41,987 32k INFO ====> Epoch: 505
687
+ 2023-02-19 12:48:50,352 32k INFO Train Epoch: 506 [26%]
688
+ 2023-02-19 12:48:50,353 32k INFO [2.4896092414855957, 2.6762804985046387, 7.441979885101318, 12.384513854980469, 0.8221025466918945, 9600, 9.388224088263103e-05]
689
+ 2023-02-19 12:49:01,920 32k INFO ====> Epoch: 506
690
+ 2023-02-19 12:49:21,631 32k INFO ====> Epoch: 507
691
+ 2023-02-19 12:49:41,235 32k INFO ====> Epoch: 508
692
+ 2023-02-19 12:50:00,878 32k INFO ====> Epoch: 509
693
+ 2023-02-19 12:50:20,529 32k INFO ====> Epoch: 510
694
+ 2023-02-19 12:50:40,218 32k INFO ====> Epoch: 511
695
+ 2023-02-19 12:50:59,886 32k INFO ====> Epoch: 512
696
+ 2023-02-19 12:51:19,546 32k INFO ====> Epoch: 513
697
+ 2023-02-19 12:51:39,163 32k INFO ====> Epoch: 514
698
+ 2023-02-19 12:51:58,821 32k INFO ====> Epoch: 515
699
+ 2023-02-19 12:52:15,760 32k INFO Train Epoch: 516 [79%]
700
+ 2023-02-19 12:52:15,761 32k INFO [1.8880212306976318, 2.990048885345459, 18.54258918762207, 15.826509475708008, 0.7649766206741333, 9800, 9.376495407047951e-05]
701
+ 2023-02-19 12:52:18,707 32k INFO ====> Epoch: 516
702
+ 2023-02-19 12:52:38,388 32k INFO ====> Epoch: 517
703
+ 2023-02-19 12:52:58,019 32k INFO ====> Epoch: 518
704
+ 2023-02-19 12:53:17,689 32k INFO ====> Epoch: 519
705
+ 2023-02-19 12:53:37,358 32k INFO ====> Epoch: 520
706
+ 2023-02-19 12:53:56,945 32k INFO ====> Epoch: 521
707
+ 2023-02-19 12:54:16,610 32k INFO ====> Epoch: 522
708
+ 2023-02-19 12:54:36,229 32k INFO ====> Epoch: 523
709
+ 2023-02-19 12:54:55,834 32k INFO ====> Epoch: 524
710
+ 2023-02-19 12:55:15,475 32k INFO ====> Epoch: 525
711
+ 2023-02-19 12:55:35,099 32k INFO ====> Epoch: 526
712
+ 2023-02-19 12:55:44,384 32k INFO Train Epoch: 527 [32%]
713
+ 2023-02-19 12:55:44,385 32k INFO [2.205662727355957, 2.867584705352783, 16.78660774230957, 16.71090316772461, 0.8774336576461792, 10000, 9.36361078076803e-05]
714
+ 2023-02-19 12:55:48,586 32k INFO Saving model and optimizer state at iteration 527 to ./logs\32k\G_10000.pth
715
+ 2023-02-19 12:56:06,798 32k INFO Saving model and optimizer state at iteration 527 to ./logs\32k\D_10000.pth
716
+ 2023-02-19 12:56:21,401 32k INFO ====> Epoch: 527
717
+ 2023-02-19 12:56:41,345 32k INFO ====> Epoch: 528
718
+ 2023-02-19 12:57:00,917 32k INFO ====> Epoch: 529
719
+ 2023-02-19 12:57:20,811 32k INFO ====> Epoch: 530
720
+ 2023-02-19 12:57:40,435 32k INFO ====> Epoch: 531
721
+ 2023-02-19 12:58:00,053 32k INFO ====> Epoch: 532
722
+ 2023-02-19 12:58:19,745 32k INFO ====> Epoch: 533
723
+ 2023-02-19 12:58:39,609 32k INFO ====> Epoch: 534
724
+ 2023-02-19 12:58:59,368 32k INFO ====> Epoch: 535
725
+ 2023-02-19 12:59:18,968 32k INFO ====> Epoch: 536
726
+ 2023-02-19 12:59:36,810 32k INFO Train Epoch: 537 [84%]
727
+ 2023-02-19 12:59:36,811 32k INFO [2.1262154579162598, 2.892063856124878, 15.072270393371582, 16.91364288330078, 0.7413275837898254, 10200, 9.351912848886779e-05]
728
+ 2023-02-19 12:59:38,927 32k INFO ====> Epoch: 537
729
+ 2023-02-19 12:59:58,556 32k INFO ====> Epoch: 538
730
+ 2023-02-19 13:00:18,246 32k INFO ====> Epoch: 539
731
+ 2023-02-19 13:00:38,193 32k INFO ====> Epoch: 540
732
+ 2023-02-19 13:00:57,974 32k INFO ====> Epoch: 541
733
+ 2023-02-19 13:01:17,641 32k INFO ====> Epoch: 542
734
+ 2023-02-19 13:01:37,271 32k INFO ====> Epoch: 543
735
+ 2023-02-19 13:01:56,865 32k INFO ====> Epoch: 544
736
+ 2023-02-19 13:02:16,505 32k INFO ====> Epoch: 545
737
+ 2023-02-19 13:02:36,125 32k INFO ====> Epoch: 546
738
+ 2023-02-19 13:02:55,699 32k INFO ====> Epoch: 547
739
+ 2023-02-19 13:03:05,776 32k INFO Train Epoch: 548 [37%]
740
+ 2023-02-19 13:03:05,776 32k INFO [2.2443082332611084, 2.77612566947937, 14.530040740966797, 16.31207275390625, 0.7399520874023438, 10400, 9.339062002506615e-05]
741
+ 2023-02-19 13:03:15,650 32k INFO ====> Epoch: 548
742
+ 2023-02-19 13:03:35,253 32k INFO ====> Epoch: 549
743
+ 2023-02-19 13:03:54,904 32k INFO ====> Epoch: 550
744
+ 2023-02-19 13:04:14,500 32k INFO ====> Epoch: 551
745
+ 2023-02-19 13:04:34,189 32k INFO ====> Epoch: 552
746
+ 2023-02-19 13:04:53,801 32k INFO ====> Epoch: 553
747
+ 2023-02-19 13:05:13,431 32k INFO ====> Epoch: 554
748
+ 2023-02-19 13:05:33,057 32k INFO ====> Epoch: 555
749
+ 2023-02-19 13:05:52,677 32k INFO ====> Epoch: 556
750
+ 2023-02-19 13:06:12,273 32k INFO ====> Epoch: 557
751
+ 2023-02-19 13:06:30,977 32k INFO Train Epoch: 558 [89%]
752
+ 2023-02-19 13:06:30,978 32k INFO [1.9971816539764404, 2.9987430572509766, 16.42749786376953, 17.72498893737793, 0.7169369459152222, 10600, 9.327394739343082e-05]
753
+ 2023-02-19 13:06:32,240 32k INFO ====> Epoch: 558
754
+ 2023-02-19 13:06:51,888 32k INFO ====> Epoch: 559
755
+ 2023-02-19 13:07:11,500 32k INFO ====> Epoch: 560
756
+ 2023-02-19 13:07:31,432 32k INFO ====> Epoch: 561
757
+ 2023-02-19 13:07:51,063 32k INFO ====> Epoch: 562
758
+ 2023-02-19 13:08:10,683 32k INFO ====> Epoch: 563
759
+ 2023-02-19 13:08:30,306 32k INFO ====> Epoch: 564
760
+ 2023-02-19 13:08:49,925 32k INFO ====> Epoch: 565
761
+ 2023-02-19 13:09:09,599 32k INFO ====> Epoch: 566
762
+ 2023-02-19 13:09:29,187 32k INFO ====> Epoch: 567
763
+ 2023-02-19 13:09:48,800 32k INFO ====> Epoch: 568
764
+ 2023-02-19 13:09:59,768 32k INFO Train Epoch: 569 [42%]
765
+ 2023-02-19 13:09:59,768 32k INFO [2.171602725982666, 2.590355157852173, 13.851484298706055, 15.077618598937988, 0.7326598167419434, 10800, 9.314577584301187e-05]
766
+ 2023-02-19 13:10:08,772 32k INFO ====> Epoch: 569
767
+ 2023-02-19 13:10:28,413 32k INFO ====> Epoch: 570
768
+ 2023-02-19 13:10:48,029 32k INFO ====> Epoch: 571
769
+ 2023-02-19 13:11:07,762 32k INFO ====> Epoch: 572
770
+ 2023-02-19 13:11:27,359 32k INFO ====> Epoch: 573
771
+ 2023-02-19 13:11:46,968 32k INFO ====> Epoch: 574
772
+ 2023-02-19 13:12:06,652 32k INFO ====> Epoch: 575
773
+ 2023-02-19 13:12:26,301 32k INFO ====> Epoch: 576
774
+ 2023-02-19 13:12:45,960 32k INFO ====> Epoch: 577
775
+ 2023-02-19 13:13:05,579 32k INFO ====> Epoch: 578
776
+ 2023-02-19 13:13:24,791 32k INFO Train Epoch: 579 [95%]
777
+ 2023-02-19 13:13:24,792 32k INFO [2.4127438068389893, 2.4390709400177, 18.234426498413086, 15.20917797088623, 0.9935965538024902, 11000, 9.302940909450543e-05]
778
+ 2023-02-19 13:13:29,089 32k INFO Saving model and optimizer state at iteration 579 to ./logs\32k\G_11000.pth
779
+ 2023-02-19 13:13:46,080 32k INFO Saving model and optimizer state at iteration 579 to ./logs\32k\D_11000.pth
780
+ 2023-02-19 13:13:50,303 32k INFO ====> Epoch: 579
781
+ 2023-02-19 13:14:10,200 32k INFO ====> Epoch: 580
782
+ 2023-02-19 13:14:29,994 32k INFO ====> Epoch: 581
783
+ 2023-02-19 13:14:49,886 32k INFO ====> Epoch: 582
784
+ 2023-02-19 13:15:09,476 32k INFO ====> Epoch: 583
785
+ 2023-02-19 13:15:29,373 32k INFO ====> Epoch: 584
786
+ 2023-02-19 13:15:49,189 32k INFO ====> Epoch: 585
787
+ 2023-02-19 13:16:09,053 32k INFO ====> Epoch: 586
788
+ 2023-02-19 13:16:28,930 32k INFO ====> Epoch: 587
789
+ 2023-02-19 13:16:48,676 32k INFO ====> Epoch: 588
790
+ 2023-02-19 13:17:08,497 32k INFO ====> Epoch: 589
791
+ 2023-02-19 13:17:20,344 32k INFO Train Epoch: 590 [47%]
792
+ 2023-02-19 13:17:20,345 32k INFO [2.5262322425842285, 2.621953010559082, 13.513108253479004, 15.703678131103516, 0.5160157680511475, 11200, 9.29015735741762e-05]
793
+ 2023-02-19 13:17:28,485 32k INFO ====> Epoch: 590
794
+ 2023-02-19 13:17:48,164 32k INFO ====> Epoch: 591
795
+ 2023-02-19 13:18:07,959 32k INFO ====> Epoch: 592
796
+ 2023-02-19 13:18:27,653 32k INFO ====> Epoch: 593
797
+ 2023-02-19 13:18:47,325 32k INFO ====> Epoch: 594
798
+ 2023-02-19 13:19:06,920 32k INFO ====> Epoch: 595
799
+ 2023-02-19 13:19:26,787 32k INFO ====> Epoch: 596
800
+ 2023-02-19 13:19:46,492 32k INFO ====> Epoch: 597
801
+ 2023-02-19 13:20:06,128 32k INFO ====> Epoch: 598
802
+ 2023-02-19 13:20:25,792 32k INFO ====> Epoch: 599
803
+ 2023-02-19 13:20:45,413 32k INFO ====> Epoch: 600
804
+ 2023-02-19 13:20:49,465 32k INFO Train Epoch: 601 [0%]
805
+ 2023-02-19 13:20:49,465 32k INFO [2.056851625442505, 2.9963862895965576, 17.283754348754883, 17.02275848388672, 0.9403309226036072, 11400, 9.277391371786995e-05]
806
+ 2023-02-19 13:21:05,470 32k INFO ====> Epoch: 601
807
+ 2023-02-19 13:21:25,118 32k INFO ====> Epoch: 602
808
+ 2023-02-19 13:21:44,922 32k INFO ====> Epoch: 603
809
+ 2023-02-19 13:22:04,542 32k INFO ====> Epoch: 604
810
+ 2023-02-19 13:22:24,116 32k INFO ====> Epoch: 605
811
+ 2023-02-19 13:22:43,845 32k INFO ====> Epoch: 606
812
+ 2023-02-19 13:23:03,995 32k INFO ====> Epoch: 607
813
+ 2023-02-19 13:23:24,240 32k INFO ====> Epoch: 608
814
+ 2023-02-19 13:23:44,685 32k INFO ====> Epoch: 609
815
+ 2023-02-19 13:24:06,943 32k INFO ====> Epoch: 610
816
+ 2023-02-19 13:24:21,160 32k INFO Train Epoch: 611 [53%]
817
+ 2023-02-19 13:24:21,161 32k INFO [2.046140193939209, 3.0505690574645996, 18.795839309692383, 19.634422302246094, 0.7730445265769958, 11600, 9.265801153564152e-05]
818
+ 2023-02-19 13:24:28,568 32k INFO ====> Epoch: 611
819
+ 2023-02-19 13:24:48,706 32k INFO ====> Epoch: 612
820
+ 2023-02-19 13:25:08,885 32k INFO ====> Epoch: 613
821
+ 2023-02-19 13:25:28,992 32k INFO ====> Epoch: 614
822
+ 2023-02-19 13:25:48,957 32k INFO ====> Epoch: 615
823
+ 2023-02-19 13:26:08,955 32k INFO ====> Epoch: 616
824
+ 2023-02-19 13:26:28,851 32k INFO ====> Epoch: 617
825
+ 2023-02-19 13:26:48,849 32k INFO ====> Epoch: 618
826
+ 2023-02-19 13:27:08,836 32k INFO ====> Epoch: 619
827
+ 2023-02-19 13:27:28,912 32k INFO ====> Epoch: 620
828
+ 2023-02-19 13:27:49,369 32k INFO ====> Epoch: 621
829
+ 2023-02-19 13:27:54,743 32k INFO Train Epoch: 622 [5%]
830
+ 2023-02-19 13:27:54,744 32k INFO [2.1044559478759766, 2.9037117958068848, 18.362964630126953, 17.604398727416992, 0.6811983585357666, 11800, 9.25306863679056e-05]
831
+ 2023-02-19 13:28:10,067 32k INFO ====> Epoch: 622
832
+ 2023-02-19 13:28:30,230 32k INFO ====> Epoch: 623
833
+ 2023-02-19 13:28:50,259 32k INFO ====> Epoch: 624
834
+ 2023-02-19 13:29:10,185 32k INFO ====> Epoch: 625
835
+ 2023-02-19 13:29:30,067 32k INFO ====> Epoch: 626
836
+ 2023-02-19 13:29:50,074 32k INFO ====> Epoch: 627
837
+ 2023-02-19 13:30:10,092 32k INFO ====> Epoch: 628
838
+ 2023-02-19 13:30:30,071 32k INFO ====> Epoch: 629
839
+ 2023-02-19 13:30:50,611 32k INFO ====> Epoch: 630
840
+ 2023-02-19 13:31:10,685 32k INFO ====> Epoch: 631
841
+ 2023-02-19 13:31:24,362 32k INFO Train Epoch: 632 [58%]
842
+ 2023-02-19 13:31:24,362 32k INFO [2.0907158851623535, 2.8510940074920654, 16.303882598876953, 16.795988082885742, 0.6851125359535217, 12000, 9.24150880489024e-05]
843
+ 2023-02-19 13:31:28,856 32k INFO Saving model and optimizer state at iteration 632 to ./logs\32k\G_12000.pth
844
+ 2023-02-19 13:31:46,760 32k INFO Saving model and optimizer state at iteration 632 to ./logs\32k\D_12000.pth
845
+ 2023-02-19 13:31:56,955 32k INFO ====> Epoch: 632
846
+ 2023-02-19 13:32:17,156 32k INFO ====> Epoch: 633
847
+ 2023-02-19 13:32:37,149 32k INFO ====> Epoch: 634
848
+ 2023-02-19 13:32:56,970 32k INFO ====> Epoch: 635
849
+ 2023-02-19 13:33:16,861 32k INFO ====> Epoch: 636
850
+ 2023-02-19 13:33:36,793 32k INFO ====> Epoch: 637
851
+ 2023-02-19 13:33:56,654 32k INFO ====> Epoch: 638
852
+ 2023-02-19 13:34:16,576 32k INFO ====> Epoch: 639
853
+ 2023-02-19 13:34:36,445 32k INFO ====> Epoch: 640
854
+ 2023-02-19 13:34:56,252 32k INFO ====> Epoch: 641
855
+ 2023-02-19 13:35:16,142 32k INFO ====> Epoch: 642
856
+ 2023-02-19 13:35:21,999 32k INFO Train Epoch: 643 [11%]
857
+ 2023-02-19 13:35:21,999 32k INFO [2.3126425743103027, 3.3445053100585938, 15.56027889251709, 17.644582748413086, 0.5389391779899597, 12200, 9.228809669227663e-05]
858
+ 2023-02-19 13:35:36,442 32k INFO ====> Epoch: 643
859
+ 2023-02-19 13:35:56,329 32k INFO ====> Epoch: 644
860
+ 2023-02-19 13:36:16,285 32k INFO ====> Epoch: 645
861
+ 2023-02-19 13:36:36,225 32k INFO ====> Epoch: 646
862
+ 2023-02-19 13:36:56,109 32k INFO ====> Epoch: 647
863
+ 2023-02-19 13:37:15,986 32k INFO ====> Epoch: 648
864
+ 2023-02-19 13:37:36,535 32k INFO ====> Epoch: 649
865
+ 2023-02-19 13:37:58,438 32k INFO ====> Epoch: 650
866
+ 2023-02-19 13:38:20,631 32k INFO ====> Epoch: 651
867
+ 2023-02-19 13:38:48,478 32k INFO ====> Epoch: 652
868
+ 2023-02-19 13:39:15,549 32k INFO Train Epoch: 653 [63%]
869
+ 2023-02-19 13:39:15,549 32k INFO [2.3998544216156006, 2.5205063819885254, 13.50827693939209, 16.829593658447266, 0.518319845199585, 12400, 9.217280143985396e-05]
870
+ 2023-02-19 13:39:23,399 32k INFO ====> Epoch: 653
871
+ 2023-02-19 13:39:44,062 32k INFO ====> Epoch: 654
872
+ 2023-02-19 13:40:04,509 32k INFO ====> Epoch: 655
873
+ 2023-02-19 13:40:24,966 32k INFO ====> Epoch: 656
874
+ 2023-02-19 13:40:46,616 32k INFO ====> Epoch: 657
875
+ 2023-02-19 13:41:06,997 32k INFO ====> Epoch: 658
876
+ 2023-02-19 13:41:27,230 32k INFO ====> Epoch: 659
877
+ 2023-02-19 13:41:47,556 32k INFO ====> Epoch: 660
878
+ 2023-02-19 13:42:07,868 32k INFO ====> Epoch: 661
879
+ 2023-02-19 13:42:28,224 32k INFO ====> Epoch: 662
880
+ 2023-02-19 13:42:48,842 32k INFO ====> Epoch: 663
881
+ 2023-02-19 13:42:55,986 32k INFO Train Epoch: 664 [16%]
882
+ 2023-02-19 13:42:55,987 32k INFO [2.1531105041503906, 2.9205827713012695, 12.979509353637695, 14.956928253173828, 1.0134525299072266, 12600, 9.204614301917867e-05]
883
+ 2023-02-19 13:43:09,755 32k INFO ====> Epoch: 664
884
+ 2023-02-19 13:43:30,293 32k INFO ====> Epoch: 665
885
+ 2023-02-19 13:43:50,838 32k INFO ====> Epoch: 666
886
+ 2023-02-19 13:44:11,454 32k INFO ====> Epoch: 667
887
+ 2023-02-19 13:44:32,018 32k INFO ====> Epoch: 668
888
+ 2023-02-19 13:44:52,353 32k INFO ====> Epoch: 669
889
+ 2023-02-19 13:45:12,710 32k INFO ====> Epoch: 670
890
+ 2023-02-19 13:45:32,939 32k INFO ====> Epoch: 671
891
+ 2023-02-19 13:45:53,246 32k INFO ====> Epoch: 672
892
+ 2023-02-19 13:46:13,398 32k INFO ====> Epoch: 673
893
+ 2023-02-19 13:46:29,187 32k INFO Train Epoch: 674 [68%]
894
+ 2023-02-19 13:46:29,187 32k INFO [2.120356321334839, 2.7157726287841797, 13.795363426208496, 18.83095932006836, 0.682133138179779, 12800, 9.193115003878036e-05]
895
+ 2023-02-19 13:46:34,017 32k INFO ====> Epoch: 674
896
+ 2023-02-19 13:46:54,188 32k INFO ====> Epoch: 675
897
+ 2023-02-19 13:47:14,233 32k INFO ====> Epoch: 676
898
+ 2023-02-19 13:47:34,315 32k INFO ====> Epoch: 677
899
+ 2023-02-19 13:47:54,390 32k INFO ====> Epoch: 678
900
+ 2023-02-19 13:48:14,419 32k INFO ====> Epoch: 679
901
+ 2023-02-19 13:48:34,434 32k INFO ====> Epoch: 680
902
+ 2023-02-19 13:48:54,500 32k INFO ====> Epoch: 681
903
+ 2023-02-19 13:49:14,535 32k INFO ====> Epoch: 682
904
+ 2023-02-19 13:49:34,589 32k INFO ====> Epoch: 683
905
+ 2023-02-19 13:49:54,633 32k INFO ====> Epoch: 684
906
+ 2023-02-19 13:50:02,241 32k INFO Train Epoch: 685 [21%]
907
+ 2023-02-19 13:50:02,241 32k INFO [1.9549205303192139, 2.509674549102783, 15.415645599365234, 16.405630111694336, 0.5037123560905457, 13000, 9.180482368119022e-05]
908
+ 2023-02-19 13:50:06,487 32k INFO Saving model and optimizer state at iteration 685 to ./logs\32k\G_13000.pth
909
+ 2023-02-19 13:50:24,993 32k INFO Saving model and optimizer state at iteration 685 to ./logs\32k\D_13000.pth
910
+ 2023-02-19 13:50:41,214 32k INFO ====> Epoch: 685
911
+ 2023-02-19 13:51:01,502 32k INFO ====> Epoch: 686
912
+ 2023-02-19 13:51:21,512 32k INFO ====> Epoch: 687
913
+ 2023-02-19 13:51:41,753 32k INFO ====> Epoch: 688
914
+ 2023-02-19 13:52:01,822 32k INFO ====> Epoch: 689
915
+ 2023-02-19 13:52:21,926 32k INFO ====> Epoch: 690
916
+ 2023-02-19 13:52:41,986 32k INFO ====> Epoch: 691
917
+ 2023-02-19 13:53:02,270 32k INFO ====> Epoch: 692
918
+ 2023-02-19 13:53:22,470 32k INFO ====> Epoch: 693
919
+ 2023-02-19 13:53:42,473 32k INFO ====> Epoch: 694
920
+ 2023-02-19 13:53:58,964 32k INFO Train Epoch: 695 [74%]
921
+ 2023-02-19 13:53:58,964 32k INFO [2.0492773056030273, 2.9210152626037598, 20.51807403564453, 21.43520164489746, 1.142478108406067, 13200, 9.169013218034329e-05]
922
+ 2023-02-19 13:54:02,863 32k INFO ====> Epoch: 695
923
+ 2023-02-19 13:54:22,924 32k INFO ====> Epoch: 696
924
+ 2023-02-19 13:54:42,972 32k INFO ====> Epoch: 697
925
+ 2023-02-19 13:55:03,260 32k INFO ====> Epoch: 698
926
+ 2023-02-19 13:55:23,335 32k INFO ====> Epoch: 699
927
+ 2023-02-19 13:55:43,367 32k INFO ====> Epoch: 700
928
+ 2023-02-19 13:56:03,452 32k INFO ====> Epoch: 701
929
+ 2023-02-19 13:56:23,507 32k INFO ====> Epoch: 702
930
+ 2023-02-19 13:56:43,553 32k INFO ====> Epoch: 703
931
+ 2023-02-19 13:57:03,890 32k INFO ====> Epoch: 704
932
+ 2023-02-19 13:57:24,195 32k INFO ====> Epoch: 705
933
+ 2023-02-19 13:57:32,664 32k INFO Train Epoch: 706 [26%]
934
+ 2023-02-19 13:57:32,664 32k INFO [2.137279987335205, 2.8736164569854736, 16.14851188659668, 14.964777946472168, 0.5104328393936157, 13400, 9.156413701526141e-05]
935
+ 2023-02-19 13:57:44,470 32k INFO ====> Epoch: 706
936
+ 2023-02-19 13:58:04,489 32k INFO ====> Epoch: 707
937
+ 2023-02-19 13:58:24,565 32k INFO ====> Epoch: 708
938
+ 2023-02-19 13:58:44,632 32k INFO ====> Epoch: 709
939
+ 2023-02-19 13:59:04,804 32k INFO ====> Epoch: 710
940
+ 2023-02-19 13:59:24,867 32k INFO ====> Epoch: 711
941
+ 2023-02-19 13:59:45,104 32k INFO ====> Epoch: 712
942
+ 2023-02-19 14:00:05,190 32k INFO ====> Epoch: 713
943
+ 2023-02-19 14:00:25,258 32k INFO ====> Epoch: 714
944
+ 2023-02-19 14:00:45,336 32k INFO ====> Epoch: 715
945
+ 2023-02-19 14:01:02,624 32k INFO Train Epoch: 716 [79%]
946
+ 2023-02-19 14:01:02,624 32k INFO [1.762975811958313, 2.899984359741211, 21.13072967529297, 15.85500717163086, 1.2023099660873413, 13600, 9.144974620357048e-05]
947
+ 2023-02-19 14:01:05,730 32k INFO ====> Epoch: 716
948
+ 2023-02-19 14:01:25,807 32k INFO ====> Epoch: 717
949
+ 2023-02-19 14:01:45,813 32k INFO ====> Epoch: 718
950
+ 2023-02-19 14:02:05,878 32k INFO ====> Epoch: 719
951
+ 2023-02-19 14:02:26,003 32k INFO ====> Epoch: 720
952
+ 2023-02-19 14:02:46,038 32k INFO ====> Epoch: 721
953
+ 2023-02-19 14:03:06,130 32k INFO ====> Epoch: 722
954
+ 2023-02-19 14:03:26,223 32k INFO ====> Epoch: 723
955
+ 2023-02-19 14:03:46,269 32k INFO ====> Epoch: 724
956
+ 2023-02-19 14:04:06,294 32k INFO ====> Epoch: 725
957
+ 2023-02-19 14:04:26,438 32k INFO ====> Epoch: 726
958
+ 2023-02-19 14:04:35,838 32k INFO Train Epoch: 727 [32%]
959
+ 2023-02-19 14:04:35,839 32k INFO [2.231358051300049, 2.4955027103424072, 12.61548137664795, 13.37820816040039, 0.7114076614379883, 13800, 9.132408136270243e-05]
960
+ 2023-02-19 14:04:46,835 32k INFO ====> Epoch: 727
961
+ 2023-02-19 14:05:07,009 32k INFO ====> Epoch: 728
962
+ 2023-02-19 14:05:27,022 32k INFO ====> Epoch: 729
963
+ 2023-02-19 14:05:47,131 32k INFO ====> Epoch: 730
964
+ 2023-02-19 14:06:07,140 32k INFO ====> Epoch: 731
965
+ 2023-02-19 14:06:27,225 32k INFO ====> Epoch: 732
966
+ 2023-02-19 14:06:47,266 32k INFO ====> Epoch: 733
967
+ 2023-02-19 14:07:07,365 32k INFO ====> Epoch: 734
968
+ 2023-02-19 14:07:27,419 32k INFO ====> Epoch: 735
969
+ 2023-02-19 14:07:47,463 32k INFO ====> Epoch: 736
970
+ 2023-02-19 14:08:05,749 32k INFO Train Epoch: 737 [84%]
971
+ 2023-02-19 14:08:05,750 32k INFO [2.0271754264831543, 2.876140594482422, 14.655152320861816, 14.280223846435547, 0.5791776180267334, 14000, 9.120999045184433e-05]
972
+ 2023-02-19 14:08:10,006 32k INFO Saving model and optimizer state at iteration 737 to ./logs\32k\G_14000.pth
973
+ 2023-02-19 14:08:26,063 32k INFO Saving model and optimizer state at iteration 737 to ./logs\32k\D_14000.pth
974
+ 2023-02-19 14:08:31,910 32k INFO ====> Epoch: 737
975
+ 2023-02-19 14:08:52,271 32k INFO ====> Epoch: 738
976
+ 2023-02-19 14:09:12,223 32k INFO ====> Epoch: 739
977
+ 2023-02-19 14:09:32,201 32k INFO ====> Epoch: 740
978
+ 2023-02-19 14:09:52,186 32k INFO ====> Epoch: 741
979
+ 2023-02-19 14:10:12,190 32k INFO ====> Epoch: 742
980
+ 2023-02-19 14:10:32,165 32k INFO ====> Epoch: 743
981
+ 2023-02-19 14:10:52,419 32k INFO ====> Epoch: 744
982
+ 2023-02-19 14:11:12,589 32k INFO ====> Epoch: 745
983
+ 2023-02-19 14:11:32,627 32k INFO ====> Epoch: 746
984
+ 2023-02-19 14:11:52,686 32k INFO ====> Epoch: 747