File size: 9,941 Bytes
5b9dc6e
49d7a23
5b9dc6e
 
 
4320b72
 
5b9dc6e
 
 
90beac4
 
2a5d4d8
90beac4
608f0f6
 
4320b72
ccb18f8
 
5b9dc6e
 
 
 
 
 
 
44cb72d
608f0f6
ccb18f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b9dc6e
 
 
 
 
608f0f6
5b9dc6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90beac4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: cc-by-nc-4.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
- finance
- medical
model-index:
- name: distilbert_finetuned_ai4privacy_v2
  results: []
datasets:
- ai4privacy/pii-masking-200k
- Isotonic/pii-masking-200k
pipeline_tag: token-classification
language:
- en
- ar
metrics:
- seqeval
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_finetuned_ai4privacy_v2

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the English Subset of [ai4privacy/pii-masking-200k](https://huggingface.co/ai4privacy/pii-masking-200k) dataset.

## Useage
GitHub Implementation: [Ai4Privacy](https://github.com/Sripaad/ai4privacy)

## Model description

This model has been finetuned on the World's largest open source privacy dataset.

The purpose of the trained models is to remove personally identifiable information (PII) from text, especially in the context of AI assistants and LLMs.

The example texts have 54 PII classes (types of sensitive data), targeting 229 discussion subjects / use cases split across business, education, psychology and legal fields, and 5 interactions styles (e.g. casual conversation, formal document, emails etc...).

Take a look at the Github implementation for specific reasearch.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 5

## Class wise metrics
It achieves the following results on the evaluation set:
- Loss: 0.0451
- Overall Precision: 0.9438
- Overall Recall: 0.9663
- Overall F1: 0.9549
- Overall Accuracy: 0.9838
  
- Accountname F1: 0.9946
- Accountnumber F1: 0.9940
- Age F1: 0.9624
- Amount F1: 0.9643
- Bic F1: 0.9929
- Bitcoinaddress F1: 0.9948
- Buildingnumber F1: 0.9845
- City F1: 0.9955
- Companyname F1: 0.9962
- County F1: 0.9877
- Creditcardcvv F1: 0.9643
- Creditcardissuer F1: 0.9953
- Creditcardnumber F1: 0.9793
- Currency F1: 0.7811
- Currencycode F1: 0.8850
- Currencyname F1: 0.2281
- Currencysymbol F1: 0.9562
- Date F1: 0.9061
- Dob F1: 0.7914
- Email F1: 1.0
- Ethereumaddress F1: 1.0
- Eyecolor F1: 0.9837
- Firstname F1: 0.9846
- Gender F1: 0.9971
- Height F1: 0.9910
- Iban F1: 0.9906
- Ip F1: 0.4349
- Ipv4 F1: 0.8126
- Ipv6 F1: 0.7679
- Jobarea F1: 0.9880
- Jobtitle F1: 0.9991
- Jobtype F1: 0.9777
- Lastname F1: 0.9684
- Litecoinaddress F1: 0.9721
- Mac F1: 1.0
- Maskednumber F1: 0.9635
- Middlename F1: 0.9330
- Nearbygpscoordinate F1: 1.0
- Ordinaldirection F1: 0.9910
- Password F1: 1.0
- Phoneimei F1: 0.9918
- Phonenumber F1: 0.9962
- Pin F1: 0.9477
- Prefix F1: 0.9546
- Secondaryaddress F1: 0.9892
- Sex F1: 0.9876
- Ssn F1: 0.9976
- State F1: 0.9893
- Street F1: 0.9873
- Time F1: 0.9889
- Url F1: 1.0
- Useragent F1: 0.9953
- Username F1: 0.9975
- Vehiclevin F1: 1.0
- Vehiclevrm F1: 1.0
- Zipcode F1: 0.9873

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1  | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:--------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:------:|:--------:|:------------------:|:-----------:|:------------:|:---------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:----------------------:|:-------------------:|:-----------:|:------------:|:--------------:|:------:|:---------:|:-------------------:|:------:|:------:|:--------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
| 0.6445        | 1.0   | 1088 | 0.3322          | 0.6449            | 0.7003         | 0.6714     | 0.8900           | 0.7607         | 0.8733           | 0.6576 | 0.1766    | 0.25   | 0.6783            | 0.3621            | 0.6005  | 0.6909         | 0.5586    | 0.0              | 0.2449              | 0.7095              | 0.2889      | 0.0             | 0.0             | 0.3902            | 0.7720  | 0.0    | 0.9862   | 0.8011             | 0.5088      | 0.7740       | 0.7118    | 0.5434    | 0.8088  | 0.0    | 0.8303  | 0.7562  | 0.5318     | 0.7294      | 0.4681     | 0.6779      | 0.0                | 0.8909 | 0.0             | 0.0107        | 0.9985                 | 0.4000              | 0.7307      | 0.9057       | 0.8618         | 0.0    | 0.9127    | 0.8235              | 0.9211 | 0.8026 | 0.4656   | 0.6390    | 0.9383  | 0.9775 | 0.8868       | 0.8201      | 0.4526        | 0.0550        | 0.5368     |
| 0.222         | 2.0   | 2176 | 0.1259          | 0.8170            | 0.8747         | 0.8449     | 0.9478           | 0.9708         | 0.9813           | 0.7638 | 0.7427    | 0.7837 | 0.8908            | 0.8833            | 0.8747  | 0.9814         | 0.8749    | 0.7601           | 0.9777              | 0.8834              | 0.5372      | 0.4828          | 0.0056          | 0.7785            | 0.8149  | 0.3140 | 0.9956   | 0.9935             | 0.9101      | 0.9270       | 0.9450    | 0.9853    | 0.9253  | 0.0650 | 0.0084  | 0.7962  | 0.9013     | 0.9446      | 0.9203     | 0.8555      | 0.6885             | 1.0    | 0.7152          | 0.6442        | 1.0                    | 0.9623              | 0.9349      | 0.9905       | 0.9782         | 0.7656 | 0.9324    | 0.9903              | 0.9736 | 0.9274 | 0.8520   | 0.9138    | 0.9678  | 0.9922 | 0.9893       | 0.9804      | 0.9646        | 0.8556        | 0.8385     |
| 0.1331        | 3.0   | 3264 | 0.0773          | 0.9133            | 0.9371         | 0.9250     | 0.9654           | 0.9822         | 0.9815           | 0.9196 | 0.8852    | 0.9718 | 0.9785            | 0.9215            | 0.9757  | 0.9935         | 0.9651    | 0.8742           | 0.9921              | 0.9438              | 0.7568      | 0.7710          | 0.0             | 0.8998            | 0.7895  | 0.6578 | 0.9994   | 1.0                | 0.9554      | 0.9525       | 0.9823    | 0.9910    | 0.9866  | 0.0435 | 0.8293  | 0.7824  | 0.9671     | 0.9794      | 0.9571     | 0.9447      | 0.9141             | 1.0    | 0.8825          | 0.7988        | 1.0                    | 0.9797              | 0.9921      | 0.9932       | 0.9943         | 0.8726 | 0.9401    | 0.9860              | 0.9792 | 0.9928 | 0.9740   | 0.9604    | 0.9730  | 0.9983 | 0.9964       | 0.9959      | 0.9890        | 0.9774        | 0.9247     |
| 0.0847        | 4.0   | 4352 | 0.0503          | 0.9368            | 0.9614         | 0.9489     | 0.9789           | 0.9955         | 0.9949           | 0.9573 | 0.9480    | 0.9929 | 0.9846            | 0.9808            | 0.9927  | 0.9962         | 0.9811    | 0.9436           | 0.9953              | 0.9695              | 0.7826      | 0.8713          | 0.1653          | 0.9458            | 0.8782  | 0.7996 | 1.0      | 1.0                | 0.9809      | 0.9816       | 0.9941    | 0.9910    | 0.9906  | 0.3389 | 0.8364  | 0.7066  | 0.9862     | 1.0         | 0.9795     | 0.9637      | 0.9429             | 1.0    | 0.9438          | 0.9165        | 1.0                    | 0.9864              | 1.0         | 0.9932       | 0.9962         | 0.9352 | 0.9483    | 0.9860              | 0.9866 | 0.9976 | 0.9884   | 0.9827    | 0.9881  | 1.0    | 0.9953       | 0.9975      | 0.9945        | 0.9915        | 0.9841     |
| 0.0557        | 5.0   | 5440 | 0.0451          | 0.9438            | 0.9663         | 0.9549     | 0.9838           | 0.9946         | 0.9940           | 0.9624 | 0.9643    | 0.9929 | 0.9948            | 0.9845            | 0.9955  | 0.9962         | 0.9877    | 0.9643           | 0.9953              | 0.9793              | 0.7811      | 0.8850          | 0.2281          | 0.9562            | 0.9061  | 0.7914 | 1.0      | 1.0                | 0.9837      | 0.9846       | 0.9971    | 0.9910    | 0.9906  | 0.4349 | 0.8126  | 0.7679  | 0.9880     | 0.9991      | 0.9777     | 0.9684      | 0.9721             | 1.0    | 0.9635          | 0.9330        | 1.0                    | 0.9910              | 1.0         | 0.9918       | 0.9962         | 0.9477 | 0.9546    | 0.9892              | 0.9876 | 0.9976 | 0.9893   | 0.9873    | 0.9889  | 1.0    | 0.9953       | 0.9975      | 1.0           | 1.0           | 0.9873     |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1