Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
@@ -11,6 +11,8 @@ datasets:
|
|
11 |
pipeline_tag: token-classification
|
12 |
language:
|
13 |
- en
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -19,8 +21,41 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
# distilbert_finetuned_ai4privacy_v2
|
20 |
|
21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [ai4privacy/pii-masking-200k](https://huggingface.co/ai4privacy/pii-masking-200k) dataset.
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
- Loss: 0.0451
|
25 |
- Overall Precision: 0.9438
|
26 |
- Overall Recall: 0.9663
|
@@ -84,32 +119,6 @@ It achieves the following results on the evaluation set:
|
|
84 |
- Vehiclevrm F1: 1.0
|
85 |
- Zipcode F1: 0.9873
|
86 |
|
87 |
-
## Model description
|
88 |
-
|
89 |
-
More information needed
|
90 |
-
|
91 |
-
## Intended uses & limitations
|
92 |
-
|
93 |
-
More information needed
|
94 |
-
|
95 |
-
## Training and evaluation data
|
96 |
-
|
97 |
-
More information needed
|
98 |
-
|
99 |
-
## Training procedure
|
100 |
-
|
101 |
-
### Training hyperparameters
|
102 |
-
|
103 |
-
The following hyperparameters were used during training:
|
104 |
-
- learning_rate: 5e-05
|
105 |
-
- train_batch_size: 8
|
106 |
-
- eval_batch_size: 8
|
107 |
-
- seed: 42
|
108 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
109 |
-
- lr_scheduler_type: cosine_with_restarts
|
110 |
-
- lr_scheduler_warmup_ratio: 0.2
|
111 |
-
- num_epochs: 5
|
112 |
-
|
113 |
### Training results
|
114 |
|
115 |
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
11 |
pipeline_tag: token-classification
|
12 |
language:
|
13 |
- en
|
14 |
+
metrics:
|
15 |
+
- seqeval
|
16 |
---
|
17 |
|
18 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
21 |
# distilbert_finetuned_ai4privacy_v2
|
22 |
|
23 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [ai4privacy/pii-masking-200k](https://huggingface.co/ai4privacy/pii-masking-200k) dataset.
|
|
|
24 |
|
25 |
+
## Useage
|
26 |
+
GitHub Implementation: [Ai4Privacy](https://github.com/Sripaad/ai4privacy)
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
This model has been finetuned on the World's largest open source privacy dataset.
|
31 |
+
|
32 |
+
The purpose of the trained models is to remove personally identifiable information (PII) from text, especially in the context of AI assistants and LLMs.
|
33 |
+
|
34 |
+
The example texts have 54 PII classes (types of sensitive data), targeting 229 discussion subjects / use cases split across business, education, psychology and legal fields, and 5 interactions styles (e.g. casual conversation, formal document, emails etc...).
|
35 |
+
|
36 |
+
Take a look at the Github implementation for specific reasearch.
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training hyperparameters
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: cosine_with_restarts
|
54 |
+
- lr_scheduler_warmup_ratio: 0.2
|
55 |
+
- num_epochs: 5
|
56 |
+
|
57 |
+
## Class wise metrics
|
58 |
+
It achieves the following results on the evaluation set:
|
59 |
- Loss: 0.0451
|
60 |
- Overall Precision: 0.9438
|
61 |
- Overall Recall: 0.9663
|
|
|
119 |
- Vehiclevrm F1: 1.0
|
120 |
- Zipcode F1: 0.9873
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
### Training results
|
123 |
|
124 |
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
|