File size: 2,462 Bytes
6bb99ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- Qwen/Qwen1.5-0.5B
---
# TinyQwex-4x620M-MoE
TinyQwex-4x620M-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B)
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B)
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B)
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B)
## 🧩 Configuration
```yamlbase_model: Qwen/Qwen1.5-0.5B
experts:
- source_model: Qwen/Qwen1.5-0.5B
positive_prompts:
- "reasoning"
- "logic"
- "problem-solving"
- "critical thinking"
- "analysis"
- "synthesis"
- "evaluation"
- "decision-making"
- "judgment"
- "insight"
- source_model: Qwen/Qwen1.5-0.5B
positive_prompts:
- "program"
- "software"
- "develop"
- "build"
- "create"
- "design"
- "implement"
- "debug"
- "test"
- "code"
- "python"
- "programming"
- "algorithm"
- "function"
- source_model: Qwen/Qwen1.5-0.5B
positive_prompts:
- "storytelling"
- "narrative"
- "fiction"
- "creative writing"
- "plot"
- "characters"
- "dialogue"
- "setting"
- "emotion"
- "imagination"
- "scene"
- "story"
- "character"
- source_model: Qwen/Qwen1.5-0.5B
positive_prompts:
- "chat"
- "conversation"
- "dialogue"
- "discuss"
- "ask questions"
- "share thoughts"
- "explore ideas"
- "learn new things"
- "personal assistant"
- "friendly helper"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Isotonic/TinyQwex-4x620M-MoE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |