File size: 3,431 Bytes
f0635bb
 
 
 
 
 
 
 
 
 
 
36fe3f1
 
 
 
 
 
f0635bb
 
8f0e28d
 
 
 
f0635bb
 
 
 
 
 
 
 
36fe3f1
e6f8bd1
 
 
 
 
 
 
 
 
36fe3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0635bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralBeagle14-7B
- AdaptLLM/finance-chat
- AdaptLLM/medicine-chat
- AdaptLLM/law-chat
datasets:
- Open-Orca/OpenOrca
- WizardLM/WizardLM_evol_instruct_V2_196k
- EleutherAI/pile
- GAIR/lima
pipeline_tag: text-generation
---

🌟 Buying me coffee is a direct way to show support for this project. 
<a href="https://www.buymeacoffee.com/isotonic"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>


# AdaptLLM-4x7B-MoE

AdaptLLM-4x7B-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
* [AdaptLLM/finance-chat](https://huggingface.co/AdaptLLM/finance-chat)
* [AdaptLLM/medicine-chat](https://huggingface.co/AdaptLLM/medicine-chat)
* [AdaptLLM/law-chat](https://huggingface.co/AdaptLLM/law-chat)

## 💻 Usage
```python
Prompt Template:

<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>

{{ user_message }} [/INST]
```

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Isotonic/AdaptLLM-4x7B-MoE"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={
    "torch_dtype": torch.float16,
    "low_cpu_mem_usage": True,
    "use_cache" : False,
    "gradient_checkpointing" : True,
    "device_map" : 'auto',
    "load_in_8bit" : True
    },
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=512, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## 🧩 Configuration

```yaml
base_model: mlabonne/NeuralBeagle14-7B
experts:
  - source_model: mlabonne/NeuralBeagle14-7B
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    - "storywriting"
    - "write"
    - "scene"
    - "story"
    - "character"
    - "instruct"
    - "summarize"
    - "count"

  - source_model: AdaptLLM/finance-chat
    positive_prompts:
    - "personal finance"
    - "budgeting"
    - "investing"
    - "retirement planning"
    - "debt management"
    - "financial education"
    - "consumer protection"
    - "financial"
    - "money"
    - "investment"
    - "banking"
    - "stock"
    - "bond"
    - "portfolio"
    - "risk"
    - "return"

  - source_model: AdaptLLM/medicine-chat
    positive_prompts:
    - "diagnose"
    - "treat"
    - "disease"
    - "symptom"
    - "medication"
    - "anatomy"
    - "physiology"
    - "pharmacology"
    - "clinical trial"
    - "medical research"

  - source_model: AdaptLLM/law-chat
    positive_prompts:
    - "law"
    - "legal"
    - "attorney"
    - "lawyer"
    - "court"
    - "contract"
    - "criminal"
    - "evidence"
    - "procedure"
    - "contracts"
    - "mergers & acquisitions"
    - "corporate governance"
    - "intellectual property"
    - "employment law"
    - "international trade"
    - "competition law"
    - "antitrust"
    - "litigation"
    - "arbitration"
    - "mediation"
```