File size: 1,443 Bytes
90057c9
5ef8ecc
 
b52e4a5
90057c9
 
5ef8ecc
90057c9
5ef8ecc
 
 
 
90057c9
5ef8ecc
90057c9
5ef8ecc
d8e59db
90057c9
5ef8ecc
90057c9
5ef8ecc
90057c9
5ef8ecc
90057c9
5ef8ecc
 
 
 
b52e4a5
5ef8ecc
 
 
90057c9
5ef8ecc
90057c9
5ef8ecc
90057c9
5ef8ecc
90057c9
b52e4a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
language: en
license: apache-2.0
library_name: transformers
---

# SQFT Base Model: sqft-phi-3-mini-4k-50-base

- Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 50%
- Quantization: No

## Model Sources

- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)

## How to get this model

Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11).

## Citation

```bash
@article{munoz2024sqft,
  title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
  journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
  year={2024}
}
```

## Acknowledgement

Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.

## License

Apache-2.0