File size: 1,090 Bytes
296f7bb 78c21db 296f7bb 78c21db ad58783 296f7bb ad58783 296f7bb ad58783 296f7bb a6fa906 ad58783 a96c305 ad58783 296f7bb ad58783 d0e482a 296f7bb b6e6083 a96c305 296f7bb a6fa906 296f7bb fcf0731 296f7bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
language: en
license: apache-2.0
tags:
- text-classfication
- int8
- PostTrainingStatic
datasets:
- sst2
metrics:
- accuracy
---
# INT8 DistilBERT base uncased finetuned SST-2
### Post-training static quantization
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so
the real sampling size is 104.
### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-accuracy)** |0.9037|0.9106|
| **Model size (MB)** |65|255|
### Load with Intel® Neural Compressor (build from source):
```python
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static',
)
```
|