xinhe commited on
Commit
296f7bb
1 Parent(s): db4d7af

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags: text-classfication
5
+ datasets:
6
+ - sst2
7
+ ---
8
+
9
+ INT8 DistilBERT base uncased finetuned SST-2 (Post-training static quantization)
10
+ ===
11
+ This is an INT8 PyTorch model quantized by [intel/nlp-toolkit](https://github.com/intel/nlp-toolkit) using provider: [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)
12
+
13
+ Test result below comes from [AWS](https://aws.amazon.com/) c6i.xlarge (intel ice lake: 4 vCPUs, 8g Memory) instance.
14
+
15
+ | |fp32|int8|
16
+ |---|:---:|:---:|
17
+ | **Accuracy** |0.9106|0.9037|
18
+ | **Throughput (samples/sec)** |?|?|
19
+ | **Model size (MB)** |255|66|
20
+
21
+
22
+ Load with optimum:
23
+ ```python
24
+ from nlp_toolkit import OptimizedModel
25
+ int8_model = OptimizedModel.from_pretrained(
26
+ 'intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static',
27
+ )
28
+ ```
29
+ Notes:
30
+ - The INT8 model has better performance than the FP32 model when the CPU is fully loaded. Otherwise, there will be the illusion that INT8 is inferior to FP32.