File size: 15,150 Bytes
b0b3b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import torch
import torch.nn as nn
from einops import rearrange, repeat
from torch import einsum, nn
from einops_exts import rearrange_many
# from .modules import GatedCrossAttentionBlock
from .utils import getattr_recursive, setattr_recursive
def exists(val):
return val is not None
def FeedForward(
dim,
mult=4,
use_ft_layernorm=False,
enable_init_network_params=False,
initializer_range=0.02,
):
inner_dim = int(dim * mult)
net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
if use_ft_layernorm and enable_init_network_params:
# only use_ft_layernorm is on and enalbe_init_network_params
# then start the initialization
net[0].weight.data.normal_(mean=0.0, std=initializer_range)
net[0].bias.data.zero_()
net[1].weight.data.normal_(mean=0.0, std=initializer_range)
net[3].weight.data.normal_(mean=0.0, std=initializer_range)
return net
# gated cross attention
class MaskedCrossAttention(nn.Module):
def __init__(
self,
*,
dim,
dim_visual,
dim_head=64,
heads=8,
only_attend_immediate_media=True,
use_ft_layernorm=False,
use_ft_flash_attention=False,
enable_init_network_params=False,
initializer_range=0.02,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.use_ft_flash_attention = False
self.initializer_range = initializer_range
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
# whether for text to only attend to immediate preceding image, or all previous images
self.only_attend_immediate_media = only_attend_immediate_media
if enable_init_network_params:
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x, media, media_locations=None, use_cached_media=False, image_mask=None):
"""
Args:
x (torch.Tensor): text features
shape (B, T_txt, D_txt)
media (torch.Tensor): image features
shape (B, T_img, n, D_img) where n is the dim of the latents
media_locations: boolean mask identifying the media tokens in x
shape (B, T_txt)
use_cached_media: bool
If true, treat all of x as if they occur after the last media
registered in media_locations. T_txt does not need to exactly
equal media_locations.shape[1] in this case
"""
if not use_cached_media:
assert media_locations.shape[1] == x.shape[1], (
f"media_location.shape is {media_locations.shape} but x.shape is"
f" {x.shape}"
)
T_txt = x.shape[1]
_, T_img, n = media.shape[:3]
h = self.heads
x = self.norm(x.contiguous())
q = self.to_q(x)
media = rearrange(media, "b t n d -> b (t n) d")
k, v = self.to_kv(media).chunk(2, dim=-1)
if exists(media_locations):
media_time = torch.arange(T_img, device=x.device) + 1
if use_cached_media:
# text time is set to the last cached media location
text_time = repeat(
torch.count_nonzero(media_locations, dim=1),
"b -> b i",
i=T_txt,
)
else:
# at each boolean of True, increment the time counter (relative to media time)
text_time = media_locations.cumsum(dim=-1)
# text time must equal media time if only attending to most immediate image
# otherwise, as long as text time is greater than media time (if attending to all previous images / media)
mask_op = torch.eq if self.only_attend_immediate_media else torch.ge
text_to_media_mask = mask_op(
rearrange(text_time, "b i -> b 1 i 1"),
repeat(media_time, "j -> 1 1 1 (j n)", n=n),
)
if self.only_attend_immediate_media:
# any text without a preceding media needs to have attention zeroed out
text_without_media_mask = text_time == 0
text_without_media_mask = rearrange(
text_without_media_mask, "b i -> b 1 i 1"
)
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)
q = q * self.scale
sim = einsum("... i d, ... j d -> ... i j", q, k)
if exists(image_mask):
image_mask = image_mask.unsqueeze(1).unsqueeze(1).bool()
image_mask = image_mask.repeat_interleave(int(sim.shape[3] / image_mask.shape[3]), dim=-1)
sim = sim.masked_fill(~image_mask, -torch.finfo(sim.dtype).max)
# if exists(media_locations):
# sim = sim.masked_fill(~text_to_media_mask, -torch.finfo(sim.dtype).max)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
if exists(media_locations) and self.only_attend_immediate_media:
# any text without a preceding media needs to have attention zeroed out
attn = attn.masked_fill(text_without_media_mask, 0.0)
out = einsum("... i j, ... j d -> ... i d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
class GatedCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
dim,
dim_visual,
dim_head=64,
heads=12,
ff_mult=1,
only_attend_immediate_media=True,
use_ft_layernorm=False,
use_ft_flash_attention=False,
enable_init_network_params=False,
initializer_range=0.02,
gradient_checkpointing=False,
):
super().__init__()
self.attn = MaskedCrossAttention(
dim=dim,
dim_visual=dim_visual,
dim_head=dim_head,
heads=heads,
only_attend_immediate_media=only_attend_immediate_media,
use_ft_flash_attention=use_ft_flash_attention,
use_ft_layernorm=use_ft_layernorm,
enable_init_network_params=enable_init_network_params,
initializer_range=initializer_range,
)
self.attn_gate = nn.Parameter(torch.zeros(dim))
self.ff = FeedForward(dim, mult=ff_mult)
self.ff_gate = nn.Parameter(torch.zeros(dim))
self.gradient_checkpointing = gradient_checkpointing
def forward(
self,
x,
media,
media_locations=None,
use_cached_media=False,
image_mask=None,
):
flag = torch.sum(media_locations, dim=-1)
flag = torch.where(flag > 0.0, 1.0, 0.0)
flag = flag.unsqueeze(1).unsqueeze(1).to(torch.bfloat16)
x = (
flag
* self.attn(
x,
media,
media_locations=media_locations,
use_cached_media=use_cached_media,
image_mask=image_mask,
)
* self.attn_gate.tanh()
+ x
)
x = flag * self.ff(x) * self.ff_gate.tanh() + x
return x
class FlamingoLayer(nn.Module):
"""
FlamingoLayer is a wrapper around the GatedCrossAttentionBlock and DecoderLayer.
"""
def __init__(
self, gated_cross_attn_layer, decoder_layer, gradient_checkpointing=False
):
super().__init__()
self.gated_cross_attn_layer = gated_cross_attn_layer
self.decoder_layer = decoder_layer
self.vis_x = None
self.media_locations = None
if self.gated_cross_attn_layer is not None:
self.gated_cross_attn_layer._use_gradient_checkpointing = (
gradient_checkpointing
)
self.decoder_layer._use_gradient_checkpointing = gradient_checkpointing
def is_conditioned(self) -> bool:
"""Check whether the layer is conditioned."""
return self.vis_x is not None and self.media_locations is not None
# Used this great idea from this implementation of Flamingo (https://github.com/dhansmair/flamingo-mini/)
def condition_vis_x(self, vis_x):
if vis_x is not None:
self.vis_x, self.image_mask = vis_x
else:
self.vis_x, self.image_mask = None, None
def condition_media_locations(self, media_locations):
self.media_locations = media_locations
def condition_use_cached_media(self, use_cached_media):
self.use_cached_media = use_cached_media
def forward(
self,
lang_x,
attention_mask=None,
**decoder_layer_kwargs,
):
# Cross attention
if self.gated_cross_attn_layer is not None:
if self.vis_x is None:
raise ValueError("vis_x must be conditioned before forward pass")
if self.media_locations is None:
raise ValueError(
"media_locations must be conditioned before forward pass"
)
lang_x = self.gated_cross_attn_layer(
lang_x,
self.vis_x,
media_locations=self.media_locations,
use_cached_media=self.use_cached_media,
image_mask=self.image_mask,
)
# Normal decoder layer
lang_x = self.decoder_layer(
lang_x, attention_mask=attention_mask, **decoder_layer_kwargs
)
return lang_x
class FlamingoLMMixin(nn.Module):
"""
Mixin to add cross-attention layers to a language model.
"""
def set_decoder_layers_attr_name(self, decoder_layers_attr_name):
self.decoder_layers_attr_name = decoder_layers_attr_name
def _get_decoder_layers(self):
return getattr_recursive(self, self.decoder_layers_attr_name)
def _set_decoder_layers(self, value):
setattr_recursive(self, self.decoder_layers_attr_name, value)
def init_flamingo(
self,
media_token_id,
lang_hidden_size,
vis_hidden_size,
cross_attn_every_n_layers,
*,
use_ft_layernorm=False,
use_ft_flash_attention=False,
enable_init_network_params=False,
initializer_range=0.02,
gradient_checkpointing=False,
):
"""
Initialize Flamingo by adding a new gated cross attn to the decoder. Store the media token id for computing the media locations.
"""
self.old_decoder_blocks = self._get_decoder_layers()
self.gated_cross_attn_layers = nn.ModuleList(
[
(
GatedCrossAttentionBlock(
dim=lang_hidden_size,
dim_visual=vis_hidden_size,
use_ft_layernorm=use_ft_layernorm,
use_ft_flash_attention=use_ft_flash_attention,
enable_init_network_params=enable_init_network_params,
initializer_range=initializer_range,
gradient_checkpointing=gradient_checkpointing,
)
if (layer_idx + 1) % cross_attn_every_n_layers == 0
else None
)
for layer_idx, _ in enumerate(self._get_decoder_layers())
]
)
self.init_flamingo_layers(gradient_checkpointing)
self.media_token_id = media_token_id
self.initialized_flamingo = True
self._use_cached_vision_x = False
def init_flamingo_layers(self, gradient_checkpointing):
"""
Re initializes the FlamingoLayers.
Propagates any changes made to self.gated_corss_attn_layers or self.old_decoder_blocks
"""
self._set_decoder_layers(
nn.ModuleList(
[
FlamingoLayer(
gated_cross_attn_layer, decoder_layer, gradient_checkpointing
)
for gated_cross_attn_layer, decoder_layer in zip(
self.gated_cross_attn_layers, self.old_decoder_blocks
)
]
)
)
def forward(self, input_ids, attention_mask, **kwargs):
"""Condition the Flamingo layers on the media locations before forward()"""
if not self.initialized_flamingo:
raise ValueError(
"Flamingo layers are not initialized. Please call `init_flamingo`"
" first."
)
media_locations = input_ids == self.media_token_id
# make all of the seq focus on the first fake image to avoid nan
# if there are media already cached and we're generating and there are no media tokens in the input,
# we'll assume that ALL input tokens should attend to the last previous media that is cached.
# this is especially important for HF generate() compatibility, since generate() calls forward()
# repeatedly one token at a time (with no media tokens).
# without this check, the model would not attend to any images when generating (after the first token)
use_cached_media_locations = (
self._use_cached_vision_x
and self.is_conditioned()
and not media_locations.any()
)
for layer in self._get_decoder_layers():
if not use_cached_media_locations:
layer.condition_media_locations(media_locations)
layer.condition_use_cached_media(use_cached_media_locations)
# package arguments for the other parent's forward. since we don't know the order of the arguments,
# make them all kwargs
kwargs["input_ids"] = input_ids
kwargs["attention_mask"] = attention_mask
return super().forward(**kwargs) # Call the other parent's forward method
def is_conditioned(self) -> bool:
"""Check whether all decoder layers are already conditioned."""
return all(l.is_conditioned() for l in self._get_decoder_layers())
def clear_conditioned_layers(self):
for layer in self._get_decoder_layers():
layer.condition_vis_x(None)
layer.condition_media_locations(None)
layer.condition_use_cached_media(None)
|