File size: 2,581 Bytes
09b756d
3a56349
 
 
 
09b756d
 
3a56349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae0b3a2
3a56349
 
 
 
 
 
 
 
 
ae0b3a2
 
3a56349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: AudioCourseU4-MusicClassification
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.88
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AudioCourseU4-MusicClassification

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8804
- Accuracy: 0.88

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7993        | 1.0   | 225  | 1.5770          | 0.4      |
| 1.0767        | 2.0   | 450  | 0.9900          | 0.7      |
| 0.8292        | 3.0   | 675  | 0.8554          | 0.73     |
| 0.5892        | 4.0   | 900  | 0.8991          | 0.74     |
| 0.1584        | 5.0   | 1125 | 0.8473          | 0.78     |
| 0.0082        | 6.0   | 1350 | 0.9282          | 0.8      |
| 0.0094        | 7.0   | 1575 | 1.0036          | 0.82     |
| 0.0581        | 8.0   | 1800 | 1.2186          | 0.82     |
| 0.0021        | 9.0   | 2025 | 1.0192          | 0.83     |
| 0.0011        | 10.0  | 2250 | 0.8804          | 0.88     |
| 0.002         | 11.0  | 2475 | 1.1519          | 0.83     |
| 0.0009        | 12.0  | 2700 | 0.9439          | 0.87     |
| 0.0006        | 13.0  | 2925 | 1.1227          | 0.84     |
| 0.0008        | 14.0  | 3150 | 1.0344          | 0.86     |
| 0.0006        | 15.0  | 3375 | 1.0209          | 0.86     |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3