Edit model card

RuBERTExtSumGazeta

Model description

Model for extractive summarization based on rubert-base-cased

Intended uses & limitations

How to use

Colab: link

import razdel
from transformers import AutoTokenizer, BertForTokenClassification

model_name = "IlyaGusev/rubert_ext_sum_gazeta"

tokenizer = AutoTokenizer.from_pretrained(model_name)
sep_token = tokenizer.sep_token
sep_token_id = tokenizer.sep_token_id

model = BertForTokenClassification.from_pretrained(model_name)

article_text = "..."
sentences = [s.text for s in razdel.sentenize(article_text)]
article_text = sep_token.join(sentences)

inputs = tokenizer(
    [article_text],
    max_length=500,
    padding="max_length",
    truncation=True,
    return_tensors="pt",
)
sep_mask = inputs["input_ids"][0] == sep_token_id

# Fix token_type_ids
current_token_type_id = 0 
for pos, input_id in enumerate(inputs["input_ids"][0]):
    inputs["token_type_ids"][0][pos] = current_token_type_id
    if input_id == sep_token_id:
        current_token_type_id = 1 - current_token_type_id

# Infer model
with torch.no_grad(): 
    outputs = model(**inputs) 
logits = outputs.logits[0, :, 1]

# Choose sentences 
logits = logits[sep_mask]
logits, indices = logits.sort(descending=True)
logits, indices = logits.cpu().tolist(), indices.cpu().tolist()
pairs = list(zip(logits, indices))
pairs = pairs[:3]
indices = list(sorted([idx for _, idx in pairs]))
summary = " ".join([sentences[idx] for idx in indices])
print(summary)

Limitations and bias

  • The model should work well with Gazeta.ru articles, but for any other agencies it can suffer from domain shift

Training data

Training procedure

TBD

Eval results

TBD

Evaluation: https://github.com/IlyaGusev/summarus/blob/master/evaluate.py

Flags: --language ru --tokenize-after --lower

Downloads last month
137
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train IlyaGusev/rubert_ext_sum_gazeta