File size: 20,196 Bytes
367577f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
# coding=utf-8

"""
Processor class for PaliGemma.
"""

import logging
from typing import List, Optional, Union, Dict
import torch
import numpy as np

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import (
    ImagesKwargs,
    ProcessingKwargs,
    ProcessorMixin,
    TextKwargs,
    Unpack,
    _validate_images_text_input_order,
)
from transformers.tokenization_utils_base import (
    AddedToken,
    PreTokenizedInput,
    TextInput,
)
from transformers.utils import logging
from .action_tokenizer import SphericalCoordinateActionTokenizer

logger = logging.get_logger(__name__)

IMAGE_TOKEN = "<image>"
EXTRA_TOKENS = [f"<loc{i:0>4}>" for i in range(1024)] + [f"<seg{i:0>3}>" for i in range(128)]


class PaliGemmaTextKwargs(TextKwargs):
    suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]


class PaliGemmaImagesKwargs(ImagesKwargs):
    do_convert_rgb: Optional[bool]


class PaliGemmaProcessorKwargs(ProcessingKwargs, total=False):
    text_kwargs: PaliGemmaTextKwargs
    images_kwargs: PaliGemmaImagesKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "images_kwargs": {
            "data_format": "channels_first",
        },
    }


# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
    return isinstance(val, str) and val.startswith("http")


# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
    return is_url(elem) or is_valid_image(elem)


def _is_str_or_image(elem):
    return isinstance(elem, (str)) or is_image_or_image_url(elem)


def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images):
    """
    Builds a string from the input prompt and image tokens.
    For example, for the call:
    build_string_from_input(
        prompt="Prefix str"
        bos_token="<s>",
        image_seq_len=3,
        image_token="<im>",
    )
    The output will be:
    "<im><im><im><s>Initial str"
    Args:
        prompt (`List[Union[str, ImageInput]]`): The input prompt.
        bos_token (`str`): The beginning of sentence token.
        image_seq_len (`int`): The length of the image sequence.
        image_token (`str`): The image token.
        num_images (`int`): Number of images in the prompt.
    """
    return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n"


# Copied from transformers.models.llava_next.image_processing_llava_next.make_batched_images
def make_batched_images(images) -> List[List[ImageInput]]:
    """
    Accepts images in list or nested list format, and makes a list of images for preprocessing.

    Args:
        images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
            The input image.

    Returns:
        list: A list of images.
    """
    if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
        return [img for img_list in images for img in img_list]

    elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
        return images

    elif is_valid_image(images):
        return [images]

    raise ValueError(f"Could not make batched video from {images}")


class SpatialVLAProcessor(ProcessorMixin):
    r"""
    Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor.

    [`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information.

    Args:
        image_processor ([`SiglipImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]
    image_processor_class = "SiglipImageProcessor"
    tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template=None,
        statistics: Optional[dict] = None,
        bin_policy=None,
        intrinsic_config=None,
        action_config=None,
        num_obs_steps=1,
        obs_delta=1,
        action_chunk_size=1,
        min_sigma=0.0,
        **kwargs,
    ):
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")
        if tokenizer is None:
            raise ValueError("You need to specify a `tokenizer`.")
        if not hasattr(image_processor, "image_seq_length"):
            raise ValueError("Image processor is missing an `image_seq_length` attribute.")

        self.image_seq_length = image_processor.image_seq_length

        if not hasattr(tokenizer, "image_token"):
            image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
            tokens_to_add = {"additional_special_tokens": [image_token]}
            tokenizer.add_special_tokens(tokens_to_add)
            self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
        else:
            self.image_token_id = tokenizer.image_token_id

        tokenizer.add_tokens(EXTRA_TOKENS)
        tokenizer.add_bos_token = False
        tokenizer.add_eos_token = False

        super().__init__(image_processor, tokenizer, chat_template=chat_template)

        # action tokenizer
        self.statistics = statistics if statistics else {}
        self.bin_policy = bin_policy
        self.min_sigma = min_sigma
        self.intrinsic_config = intrinsic_config
        self.action_config = action_config
        self.num_obs_steps = num_obs_steps
        self.obs_delta = obs_delta
        self.action_chunk_size = action_chunk_size
        self.dataset_intrinsics = {}
        height, width = image_processor.size["height"], image_processor.size["width"]

        for k, v in intrinsic_config.items():
            K = torch.tensor(v["intrinsic"]).float()
            h, w = v["height"], v["width"]
            K[0, 0] *= width / w
            K[1, 1] *= height / h
            K[0, 2] *= width / w
            K[1, 2] *= height / h
            self.dataset_intrinsics[k] = K
            print(f"scale intrinsic of {k} from {v['intrinsic']} to {K} ...")
        
        self.action_tokenizer = SphericalCoordinateActionTokenizer(
            tokenizer=tokenizer, num_bins=action_config["num_bins"], 
            bin_policy=bin_policy, use_spherical=action_config["use_spherical"],
            min_sigma=min_sigma,
        )

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        audio=None,
        videos=None,
        unnorm_key: Optional[str] = None,
        suffix_actions: Optional[np.array] = None, # (t e)
        **kwargs: Unpack[PaliGemmaProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to
        the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for
        the prefix and the suffix. For instance,
        ```python
        image = PIL_cow_image
        prompt = "answer en Where is the cow standing?"
        suffix = "on the beach"
        inputs = processor(text=prompt, images=image, suffix=suffix)
        ```
        Here `inputs` will contain the `input_ids` and `token_type_ids` that follow
        ```python
        inputs["input_ids"][:, 256:]
        # tensor([[     2,   6006,    603,    573,  13910,   9980, 235336,    108,    477,   573,   8318]])
        inputs["token_type_ids"][:, 256:]
        tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
        ```
        Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type.


        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.
            suffix (`str`, `List[str]`, `List[List[str]]`):
                The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md
                for more information. If your prompt is "<image> What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench".

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
              is provided, the `input_ids` will also contain the suffix input ids.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **labels** -- Labels compatible with training if `suffix` is not None
        """
        # check if images and text inputs are reversed for BC
        images, text = _validate_images_text_input_order(images, text)

        output_kwargs = self._merge_kwargs(
            PaliGemmaProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if suffix_actions is not None:
            action_tokens = self.action_tokenizer(suffix_actions) # (n,3)
            suffix="".join(action_tokens.flatten())
        else:
            suffix = output_kwargs["text_kwargs"].pop("suffix", None)

        return_token_type_ids = True if suffix is not None else False

        if images is None:
            raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.")
        if text is None:
            logger.warning_once(
                "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model."
            )
            text = ""

        if _is_str_or_image(text):
            text = [text]
        elif isinstance(text, list) and _is_str_or_image(text[0]):
            pass

        if text is not None and images is not None:
            if not any(IMAGE_TOKEN in sample for sample in text):
                # logger.warning(
                #     "You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special "
                #     "image tokens in the text, as many tokens as there are images per each text. It is recommended to "
                #     "add `<image>` tokens in the very beginning of your text. For this call, we will infer how many images "
                #     "each text has and add special tokens."
                # )
                if isinstance(text, List) and isinstance(images, List):
                    if len(images) != len(text):
                        raise ValueError(
                            f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images."
                        )

                # make a nested list of lists to be able to iterate over the images and text below
                if is_valid_image(images):
                    images = [[images]]
                elif isinstance(images, list) and is_valid_image(images[0]):
                    images = [[image] for image in images]
                elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
                    raise ValueError("images must be an image, list of images or list of list of images")

                if suffix is not None and _is_str_or_image(suffix):
                    suffix = [suffix]
                if suffix is not None:
                    suffix = [sfx + self.tokenizer.eos_token for sfx in suffix]

                input_strings = [
                    build_string_from_input(
                        prompt=prompt,
                        bos_token=self.tokenizer.bos_token,
                        image_seq_len=self.image_seq_length,
                        image_token=IMAGE_TOKEN,
                        num_images=len(image_list) if isinstance(image_list, list) else 1,
                    )
                    for prompt, image_list in zip(text, images)
                ]
                images = make_batched_images(images)
            else:
                expanded_samples = []
                for sample in text:
                    expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length)
                    bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN)
                    bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0
                    expanded_sample = (
                        expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:]
                    )
                    expanded_samples.append(expanded_sample)
                input_strings = [f"{sample}\n" for sample in expanded_samples]
        pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]

        # max_length has to account for the image tokens
        if output_kwargs["text_kwargs"].get("max_length", None) is not None:
            output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length

        inputs = self.tokenizer(
            input_strings,
            text_pair=suffix,
            return_token_type_ids=return_token_type_ids,
            **output_kwargs["text_kwargs"],
        )

        intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"]
        return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic}

        if return_token_type_ids:
            labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
            return_data.update({"labels": labels})
        return BatchFeature(data=return_data)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

    def decode_actions(
        self,
        generation_outputs: torch.Tensor,
        unnorm_key: Optional[str] = None,
    ) -> Dict[str, torch.Tensor]:
        action_token_num = 3  # translation + rotation + gripper
        predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy()
        assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!"

        if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size:  # pad with zeros
            print(f"[warning] Padding zero action!")
            predicted_action_token_ids = np.concatenate(
                [
                    predicted_action_token_ids,
                    np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong),
                ]
            )
        predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num)
        normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids)

        # Unnormalize actions
        if unnorm_key is None:
            print(f"🔥 unnorm_key {unnorm_key} is not in statistics, use next one")
            unnorm_key = next(self.statistics.keys())
        action_norm_stats = self.statistics[unnorm_key]["action"]

        action_dim = len(action_norm_stats["q01"])
        mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool)
        action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])

        actions = []
        for normalized_actions in normalized_action_chunks:
            action = np.where(
                mask,
                0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
                normalized_actions,
            )
            actions.append(action)
        actions = np.stack(actions)
        return {"actions": actions, "action_ids": predicted_action_token_ids}