Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- action_tokenizer.py +446 -0
- config.json +320 -0
- configuration_spatialvla.py +172 -0
- dataset_statistics.json +3502 -0
- example.png +0 -0
- generation_config.json +8 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_ego3d.py +126 -0
- modeling_gemma2.py +1285 -0
- modeling_spatialvla.py +773 -0
- preprocessor_config.json +28 -0
- processing_spatialvla.py +439 -0
- processor_config.json +3702 -0
- special_tokens_map.json +39 -0
- test_huggingface.py +35 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
action_tokenizer.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
|
3 |
+
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
|
4 |
+
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
|
5 |
+
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
6 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
7 |
+
# coding=utf-8
|
8 |
+
|
9 |
+
"""
|
10 |
+
action_tokenizer.py
|
11 |
+
|
12 |
+
Extension class; wraps base LLM/VLM tokenizer with logic to discretize and tokenize continuous robot actions.
|
13 |
+
"""
|
14 |
+
from typing import List, Union, Dict, Tuple, Optional
|
15 |
+
import numpy as np
|
16 |
+
from transformers import PreTrainedTokenizerBase
|
17 |
+
from pathlib import Path
|
18 |
+
import json
|
19 |
+
from scipy.stats import norm
|
20 |
+
import torch
|
21 |
+
|
22 |
+
ACTION_TOKEN = '<ACTION{:05d}>'
|
23 |
+
|
24 |
+
"""Spatial Tokenizer"""
|
25 |
+
class ActionTokenizer:
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
tokenizer: PreTrainedTokenizerBase,
|
29 |
+
num_bins: int = 256,
|
30 |
+
min_action: int = -1,
|
31 |
+
max_action: int = 1,
|
32 |
+
):
|
33 |
+
self._vocab_size = num_bins
|
34 |
+
self.tokenizer = tokenizer
|
35 |
+
self.min_action, self.max_action = min_action, max_action
|
36 |
+
self.bin_centers = np.linspace(min_action, max_action, num_bins)
|
37 |
+
|
38 |
+
# add special action tokens to language tokenizer
|
39 |
+
token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
|
40 |
+
self.token_array = np.array(token_list)
|
41 |
+
|
42 |
+
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
|
43 |
+
print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
|
44 |
+
|
45 |
+
self.action_token_begin_idx = self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
|
46 |
+
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
|
47 |
+
|
48 |
+
def __call__(self, action: np.ndarray) -> List[str]:
|
49 |
+
"""Discretize continuous actions to tokens.
|
50 |
+
action: np.ndarray, (n, 7), continuous actions in Cartesian or Spherical coordinates.
|
51 |
+
return: np.ndarray, (n, 7), tokens.
|
52 |
+
"""
|
53 |
+
action = np.clip(action, a_min=float(self.min_action), a_max=float(self.max_action))
|
54 |
+
ids = np.digitize(action, self.bin_centers, right=True) # [0, 255]
|
55 |
+
return self.token_array[ids]
|
56 |
+
|
57 |
+
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
|
58 |
+
"""decode token ids to continuous actions.
|
59 |
+
action_token_id: np.ndarray, (n, 7), token ids.
|
60 |
+
return: np.ndarray, (n, 7), continuous actions
|
61 |
+
"""
|
62 |
+
ids = action_token_id - self.action_token_begin_idx
|
63 |
+
ids = np.clip(ids, a_min=0, a_max=self._vocab_size - 1)
|
64 |
+
return self.bin_centers[ids]
|
65 |
+
|
66 |
+
@property
|
67 |
+
def vocab_size(self) -> int:
|
68 |
+
return self._vocab_size
|
69 |
+
|
70 |
+
"""Spatial Tokenizer"""
|
71 |
+
class TranslationTokenizer:
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
tokenizer: PreTrainedTokenizerBase,
|
75 |
+
num_bins: Dict,
|
76 |
+
bin_policy: Optional[Dict] = None,
|
77 |
+
use_spherical: bool = True,
|
78 |
+
):
|
79 |
+
self.tokenizer = tokenizer
|
80 |
+
self.num_theta_bins = num_bins["theta_bins"]
|
81 |
+
self.num_phi_bins = num_bins["phi_bins"]
|
82 |
+
self.num_r_bins = num_bins["r_bins"]
|
83 |
+
self.use_spherical = use_spherical
|
84 |
+
|
85 |
+
# for indexing
|
86 |
+
self.NP = self.num_phi_bins * self.num_r_bins
|
87 |
+
|
88 |
+
# add special action tokens to language tokenizer
|
89 |
+
self._vocab_size = self.num_theta_bins * self.num_phi_bins * self.num_r_bins
|
90 |
+
token_list = [ACTION_TOKEN.format(i) for i in range(self._vocab_size)]
|
91 |
+
self.token_array = np.array(token_list)
|
92 |
+
|
93 |
+
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
|
94 |
+
print(f"Add {num_new_tokens} TRANSLATION TOKENS, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
|
95 |
+
|
96 |
+
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
|
97 |
+
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
|
98 |
+
self.set_bins(bin_policy)
|
99 |
+
|
100 |
+
def set_bins(self, bin_policy):
|
101 |
+
self.theta_bins = np.array(bin_policy["theta_bins"])
|
102 |
+
self.phi_bins = np.array(bin_policy["phi_bins"])
|
103 |
+
self.r_bins = np.array(bin_policy["r_bins"])
|
104 |
+
|
105 |
+
def cartesian_to_spherical(self, x, y, z):
|
106 |
+
theta = np.arctan2(np.sqrt(x**2 + y**2), z) # polar angle
|
107 |
+
phi = np.arctan2(y, x) # azimuthal angle
|
108 |
+
r = np.sqrt(x**2 + y**2 + z**2)
|
109 |
+
return theta, phi, r
|
110 |
+
|
111 |
+
def spherical_to_cartesian(self, theta, phi, r):
|
112 |
+
x = r * np.sin(theta) * np.cos(phi)
|
113 |
+
y = r * np.sin(theta) * np.sin(phi)
|
114 |
+
z = r * np.cos(theta)
|
115 |
+
return x, y, z
|
116 |
+
|
117 |
+
def __call__(self, action: np.ndarray) -> List[str]:
|
118 |
+
"""Discretize continuous actions to tokens.
|
119 |
+
action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
|
120 |
+
return: np.ndarray, (n,), tokens.
|
121 |
+
"""
|
122 |
+
if self.use_spherical:
|
123 |
+
theta, phi, r = self.cartesian_to_spherical(action[:, 0], action[:, 1], action[:, 2])
|
124 |
+
else:
|
125 |
+
theta, phi, r = action[:, 0], action[:, 1], action[:, 2]
|
126 |
+
|
127 |
+
disc_theta = np.digitize(theta, self.theta_bins[1:-1]) # b
|
128 |
+
disc_phi = np.digitize(phi, self.phi_bins[1:-1])
|
129 |
+
disc_r = np.digitize(r, self.r_bins[1:-1])
|
130 |
+
ids = disc_theta * self.NP + disc_phi * self.num_r_bins + disc_r
|
131 |
+
return self.token_array[ids]
|
132 |
+
|
133 |
+
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
|
134 |
+
"""decode token ids to continuous actions.
|
135 |
+
action_token_id: np.ndarray, (n,), token ids.
|
136 |
+
return: np.ndarray, (n, 3), continuous actions
|
137 |
+
"""
|
138 |
+
action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
|
139 |
+
ids = action_token_id - self.token_start_idx
|
140 |
+
disc_theta, disc_phi, disc_r = ids // self.NP, (ids % self.NP) // self.num_r_bins, ids % self.num_r_bins
|
141 |
+
|
142 |
+
theta = 0.5 * (self.theta_bins[disc_theta] + self.theta_bins[disc_theta + 1])
|
143 |
+
phi = 0.5 * (self.phi_bins[disc_phi] + self.phi_bins[disc_phi + 1])
|
144 |
+
r = 0.5 * (self.r_bins[disc_r] + self.r_bins[disc_r + 1])
|
145 |
+
|
146 |
+
# clip action to [-1, 1], due to the spherical coordinate action space is the circumscribed sphere of the Cartesian action space.
|
147 |
+
x, y, z = self.spherical_to_cartesian(theta, phi, r) if self.use_spherical else (theta, phi, r)
|
148 |
+
x, y, z = np.clip([x, y, z], -1, 1)
|
149 |
+
return np.stack((x, y, z), axis=1)
|
150 |
+
|
151 |
+
@property
|
152 |
+
def vocab_size(self) -> int:
|
153 |
+
return self._vocab_size
|
154 |
+
|
155 |
+
class RotationTokenizer:
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
tokenizer: PreTrainedTokenizerBase,
|
159 |
+
num_bins: Dict,
|
160 |
+
bin_policy: Optional[Dict] = None,
|
161 |
+
array_begin_idx=None,
|
162 |
+
):
|
163 |
+
self.tokenizer = tokenizer
|
164 |
+
self.num_roll_bins = num_bins["roll_bins"] # M
|
165 |
+
self.num_pitch_bins = num_bins["pitch_bins"] # N
|
166 |
+
self.num_yaw_bins = num_bins["yaw_bins"] # P
|
167 |
+
self.array_begin_idx = array_begin_idx
|
168 |
+
|
169 |
+
# for indexing
|
170 |
+
self.NP = self.num_pitch_bins * self.num_yaw_bins
|
171 |
+
|
172 |
+
# add special action tokens to language tokenizer
|
173 |
+
self._vocab_size = self.num_roll_bins * self.num_pitch_bins * self.num_yaw_bins
|
174 |
+
token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self._vocab_size)]
|
175 |
+
self.token_array = np.array(token_list)
|
176 |
+
|
177 |
+
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
|
178 |
+
print(f"Add {num_new_tokens} ROTATION TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
|
179 |
+
|
180 |
+
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
|
181 |
+
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
|
182 |
+
self.set_bins(bin_policy)
|
183 |
+
|
184 |
+
def set_bins(self, bin_policy):
|
185 |
+
self.roll_bins = np.array(bin_policy["roll_bins"])
|
186 |
+
self.pitch_bins = np.array(bin_policy["pitch_bins"])
|
187 |
+
self.yaw_bins = np.array(bin_policy["yaw_bins"])
|
188 |
+
|
189 |
+
def __call__(self, action: np.ndarray) -> List[str]:
|
190 |
+
"""Discretize continuous actions to tokens.
|
191 |
+
action: np.ndarray, (n, 3), continuous actions in Cartesian or Spherical coordinates.
|
192 |
+
return: np.ndarray, (n,), tokens.
|
193 |
+
"""
|
194 |
+
roll, pitch, yaw = action[:, 0], action[:, 1], action[:, 2]
|
195 |
+
disc_roll = np.clip(np.digitize(roll, self.roll_bins) - 1, 0, self.num_roll_bins - 1)
|
196 |
+
disc_pitch = np.clip(np.digitize(pitch, self.pitch_bins) - 1, 0, self.num_pitch_bins - 1)
|
197 |
+
disc_yaw = np.clip(np.digitize(yaw, self.yaw_bins) - 1, 0, self.num_yaw_bins - 1)
|
198 |
+
|
199 |
+
ids = disc_roll * self.NP + disc_pitch * self.num_yaw_bins + disc_yaw
|
200 |
+
return self.token_array[ids]
|
201 |
+
|
202 |
+
def decode_token_ids_to_actions(self, action_token_id: Union[np.int64, np.ndarray]) -> np.ndarray:
|
203 |
+
"""decode token ids to continuous actions.
|
204 |
+
action_token_id: np.ndarray, (n,), token ids.
|
205 |
+
return: np.ndarray, (n, 3), continuous actions
|
206 |
+
"""
|
207 |
+
action_token_id = np.clip(action_token_id, a_min=self.token_start_idx, a_max=self.token_end_idx)
|
208 |
+
ids = action_token_id - self.token_start_idx
|
209 |
+
disc_roll, disc_pitch, disc_yaw = ids // self.NP, (ids % self.NP) // self.num_yaw_bins, ids % self.num_yaw_bins
|
210 |
+
|
211 |
+
roll = 0.5 * (self.roll_bins[disc_roll] + self.roll_bins[disc_roll + 1])
|
212 |
+
pitch = 0.5 * (self.pitch_bins[disc_pitch] + self.pitch_bins[disc_pitch + 1])
|
213 |
+
yaw = 0.5 * (self.yaw_bins[disc_yaw] + self.yaw_bins[disc_yaw + 1])
|
214 |
+
return np.stack((roll, pitch, yaw), axis=1)
|
215 |
+
|
216 |
+
@property
|
217 |
+
def vocab_size(self) -> int:
|
218 |
+
return self._vocab_size
|
219 |
+
|
220 |
+
class GripperTokenzier:
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
tokenizer: PreTrainedTokenizerBase,
|
224 |
+
num_bins: int = 2,
|
225 |
+
array_begin_idx = None,
|
226 |
+
) -> None:
|
227 |
+
self.tokenizer = tokenizer
|
228 |
+
self.num_bins = num_bins
|
229 |
+
self.array_begin_idx = array_begin_idx
|
230 |
+
token_list = [ACTION_TOKEN.format(i + self.array_begin_idx) for i in range(self.num_bins)]
|
231 |
+
self.token_array = np.array(token_list)
|
232 |
+
|
233 |
+
num_new_tokens = self.tokenizer.add_tokens(token_list, special_tokens=True)
|
234 |
+
print(f"Add {num_new_tokens} GRIPPER TOKENS to tokenizer, tokenizer vocab size {self.tokenizer.vocab_size} / {len(tokenizer)}")
|
235 |
+
|
236 |
+
self.token_start_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[0])
|
237 |
+
self.token_end_idx = self.tokenizer.convert_tokens_to_ids(self.token_array[-1])
|
238 |
+
|
239 |
+
def __call__(self, action: np.ndarray) -> List[str]:
|
240 |
+
"""Discretize continuous actions to tokens.
|
241 |
+
action: np.ndarray, (n,), continuous actions in Cartesian or Spherical coordinates.
|
242 |
+
return: np.ndarray, (n,), tokens.
|
243 |
+
"""
|
244 |
+
ids = np.where(action >= 0.5, 1, 0)
|
245 |
+
return self.token_array[ids]
|
246 |
+
|
247 |
+
def decode_token_ids_to_actions(self, action_token_id: np.ndarray) -> np.ndarray:
|
248 |
+
"""decode token ids to continuous actions.
|
249 |
+
action_token_id: np.ndarray, (n,), token ids.
|
250 |
+
return: np.ndarray, (n, 1), continuous actions
|
251 |
+
"""
|
252 |
+
action_token_id = np.clip(action_token_id, self.token_start_idx, self.token_end_idx)
|
253 |
+
ids = action_token_id - self.token_start_idx
|
254 |
+
actions = np.where(ids == 0, 0., 1.)
|
255 |
+
return actions[:, None]
|
256 |
+
|
257 |
+
@property
|
258 |
+
def vocab_size(self) -> int:
|
259 |
+
return self.num_bins
|
260 |
+
|
261 |
+
class SphericalCoordinateActionTokenizer:
|
262 |
+
range_bins = {
|
263 |
+
"translation": {
|
264 |
+
"theta_bins": (0.0, np.pi),
|
265 |
+
"phi_bins": (-np.pi, np.pi),
|
266 |
+
"r_bins": (0.0, np.sqrt(3)),
|
267 |
+
},
|
268 |
+
"rotation": {
|
269 |
+
"roll_bins": (-1.0, 1.0),
|
270 |
+
"pitch_bins": (-1.0, 1.0),
|
271 |
+
"yaw_bins": (-1.0, 1.0),
|
272 |
+
},
|
273 |
+
}
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
tokenizer: PreTrainedTokenizerBase,
|
277 |
+
num_bins: Dict,
|
278 |
+
gs_params: Dict = None,
|
279 |
+
bin_policy: Dict = None,
|
280 |
+
use_spherical: bool = True,
|
281 |
+
min_sigma: float = 0.0,
|
282 |
+
min_action: float = -1.0,
|
283 |
+
max_action: float = 1.0,
|
284 |
+
):
|
285 |
+
"""set bin_policy if exist, otherwise, caculate bin_policy from gs_params.(unifrom if None Gaussian)
|
286 |
+
gs_params: Optional[Dict],
|
287 |
+
bin_policy: Optional[Dict],
|
288 |
+
"""
|
289 |
+
self.tokenizer = tokenizer
|
290 |
+
self.min_action, self.max_action = min_action, max_action
|
291 |
+
self.num_bins = num_bins
|
292 |
+
self.min_sigma = min_sigma
|
293 |
+
|
294 |
+
# set bin policy
|
295 |
+
self.bin_policy = bin_policy if bin_policy else self.get_bin_policy(gs_params, self.min_sigma)
|
296 |
+
|
297 |
+
self.translation_tokenizer = TranslationTokenizer(
|
298 |
+
self.tokenizer,
|
299 |
+
self.num_bins["translation"],
|
300 |
+
self.bin_policy["translation"],
|
301 |
+
use_spherical=use_spherical
|
302 |
+
)
|
303 |
+
|
304 |
+
self.rotation_tokenizer = RotationTokenizer(
|
305 |
+
self.tokenizer,
|
306 |
+
self.num_bins["rotation"],
|
307 |
+
self.bin_policy["rotation"],
|
308 |
+
array_begin_idx=self.translation_tokenizer.vocab_size,
|
309 |
+
)
|
310 |
+
|
311 |
+
self.gripper_tokenizer = GripperTokenzier(
|
312 |
+
self.tokenizer,
|
313 |
+
self.num_bins["gripper"],
|
314 |
+
array_begin_idx=self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size
|
315 |
+
)
|
316 |
+
self._vocab_size = self.translation_tokenizer.vocab_size + self.rotation_tokenizer.vocab_size + self.gripper_tokenizer.vocab_size
|
317 |
+
|
318 |
+
def __call__(self, action: np.ndarray) -> List[str]:
|
319 |
+
"""Discretize continuous actions to tokens.
|
320 |
+
action: np.ndarray, (n, 7), continuous actions in Cartesian coordinates.
|
321 |
+
return: np.ndarray, (n, 3), tokens.
|
322 |
+
"""
|
323 |
+
if len(action.shape) == 1:
|
324 |
+
assert action.shape[0] == 7, f"action dim mismatch, got action shape: {action.shape}"
|
325 |
+
action = action.reshape(1, 7)
|
326 |
+
assert action.shape[1] == 7, f"action dim mismatch, got action shape: {action.shape}"
|
327 |
+
|
328 |
+
action = np.clip(action, a_min=self.min_action, a_max=self.max_action)
|
329 |
+
trans_tokens = self.translation_tokenizer(action[:, :3]) # (n,)
|
330 |
+
rot_tokens = self.rotation_tokenizer(action[:, 3:6]) # (n,)
|
331 |
+
grip_tokens = self.gripper_tokenizer(action[:, 6]) # (n,)
|
332 |
+
return np.stack((trans_tokens, rot_tokens, grip_tokens), axis=1) # (n, 3)
|
333 |
+
|
334 |
+
def decode_token_ids_to_actions(self, action_token_ids: np.ndarray) -> np.ndarray:
|
335 |
+
"""decode token ids to continuous actions.
|
336 |
+
action_token_ids: np.ndarray, (n, 3), token ids.
|
337 |
+
"""
|
338 |
+
if len(action_token_ids.shape) == 1:
|
339 |
+
assert action_token_ids.shape[0] == 3, f"action token id numbers mismatich, need 3 got {action_token_ids.shape[0]}"
|
340 |
+
action_token_ids = action_token_ids.reshape(1, 3)
|
341 |
+
assert action_token_ids.shape[1] == 3, f"token id numbers mismatich, need 3 got {action_token_ids.shape[1]}"
|
342 |
+
|
343 |
+
trans_action = self.translation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 0]) # (n, 3)
|
344 |
+
rot_action = self.rotation_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 1]) # (n, 3)
|
345 |
+
grip_action = self.gripper_tokenizer.decode_token_ids_to_actions(action_token_ids[:, 2]) # (n, 1)
|
346 |
+
return np.concatenate((trans_action, rot_action, grip_action), axis=1) # (n, 7)
|
347 |
+
|
348 |
+
@property
|
349 |
+
def vocab_size(self) -> int:
|
350 |
+
return self._vocab_size
|
351 |
+
|
352 |
+
@property
|
353 |
+
def action_token_begin_idx(self) -> int:
|
354 |
+
return self.translation_tokenizer.token_start_idx
|
355 |
+
|
356 |
+
def get_bin_policy(self, gs_params=None, min_sigma=0.0):
|
357 |
+
bin_policy = {
|
358 |
+
"translation": {"theta_bins": None, "phi_bins": None, "r_bins": None},
|
359 |
+
"rotation": {"roll_bins": None, "pitch_bins": None, "yaw_bins": None}
|
360 |
+
}
|
361 |
+
if gs_params is None:
|
362 |
+
for bin_type in self.range_bins.keys():
|
363 |
+
for bin_key in self.range_bins[bin_type].keys():
|
364 |
+
bin_policy[bin_type][bin_key] = np.linspace(*self.range_bins[bin_type][bin_key], self.num_bins[bin_type][bin_key] + 1)
|
365 |
+
print(f"use unifrom bin grids ... \n{bin_policy}")
|
366 |
+
else:
|
367 |
+
for bin_type in self.range_bins.keys():
|
368 |
+
for bin_key in self.range_bins[bin_type].keys():
|
369 |
+
mu = gs_params[bin_key.split("_")[0].lower()]["mu"]
|
370 |
+
sigma = max(gs_params[bin_key.split("_")[0].lower()]["sigma"], min_sigma)
|
371 |
+
bin_bound_prob = np.linspace(
|
372 |
+
norm.cdf(self.range_bins[bin_type][bin_key][0], loc=mu, scale=sigma),
|
373 |
+
norm.cdf(self.range_bins[bin_type][bin_key][1], loc=mu, scale=sigma),
|
374 |
+
self.num_bins[bin_type][bin_key] + 1,
|
375 |
+
)
|
376 |
+
bin_boundary = norm.ppf(bin_bound_prob, loc=mu, scale=sigma)
|
377 |
+
bin_policy[bin_type][bin_key] = np.clip(
|
378 |
+
bin_boundary,
|
379 |
+
self.range_bins[bin_type][bin_key][0],
|
380 |
+
self.range_bins[bin_type][bin_key][1],
|
381 |
+
).tolist() # for serialize
|
382 |
+
print(f"caculate bin grids from gaussians \n{bin_policy}")
|
383 |
+
return bin_policy
|
384 |
+
|
385 |
+
def get_norm_meshgrid(self, bin_policy):
|
386 |
+
grids = []
|
387 |
+
policy = {k1: {k2: np.array(v2) for k2, v2 in v1.items()} for k1, v1 in bin_policy.items()}
|
388 |
+
# NOTE: use unify k,v order of range_bins (tpr, rpy)
|
389 |
+
for bin_type in self.range_bins.keys():
|
390 |
+
bounds = []
|
391 |
+
for bin_key in self.range_bins[bin_type].keys():
|
392 |
+
minb, maxb = self.range_bins[bin_type][bin_key][0], self.range_bins[bin_type][bin_key][1]
|
393 |
+
bin_boundary = policy[bin_type][bin_key]
|
394 |
+
bin_center = (bin_boundary[:-1] + bin_boundary[1:]) / 2
|
395 |
+
bin_center = np.concatenate([np.array([minb]),bin_center,np.array([maxb])]) # padding
|
396 |
+
bin_center = (bin_center - minb) / (maxb - minb) # nomalize (m, n, k)
|
397 |
+
bounds.append(bin_center)
|
398 |
+
# generate grids
|
399 |
+
grid_x, grid_y, grid_z = np.meshgrid(*bounds)
|
400 |
+
grids += [np.stack([grid_x, grid_y, grid_z], -1).reshape(-1, 3)]
|
401 |
+
return grids[0], grids[1] # (N, 3)
|
402 |
+
|
403 |
+
def spatial_embedding_adaption(self, gs_params, embeddings: torch.nn.Embedding, min_sigma=0.0, adpt_feature=False):
|
404 |
+
"""
|
405 |
+
gs_params0, gs_params1: Dict
|
406 |
+
embeddings: tensor (S,E)
|
407 |
+
"""
|
408 |
+
from scipy.interpolate import griddata
|
409 |
+
# __import__("ipdb").set_trace()
|
410 |
+
|
411 |
+
new_policy = self.get_bin_policy(gs_params, min_sigma=min_sigma)
|
412 |
+
trans_grids0, rot_grids0 = self.get_norm_meshgrid(self.bin_policy)
|
413 |
+
trans_grids1, rot_grids1 = self.get_norm_meshgrid(new_policy)
|
414 |
+
|
415 |
+
print("🔥 overwrite bin policy and tokenizer bins ...")
|
416 |
+
self.bin_policy = new_policy
|
417 |
+
self.min_sigma = min_sigma
|
418 |
+
self.translation_tokenizer.set_bins(new_policy["translation"])
|
419 |
+
self.rotation_tokenizer.set_bins(new_policy["rotation"])
|
420 |
+
|
421 |
+
if adpt_feature:
|
422 |
+
emb_data = embeddings.weight.data # (S, e)
|
423 |
+
_, E = emb_data.shape
|
424 |
+
|
425 |
+
# translation
|
426 |
+
m, n, k = (self.num_bins["translation"][k] for k in ["theta_bins", "phi_bins", "r_bins"])
|
427 |
+
N = m*n*k
|
428 |
+
trans_emb_data = emb_data[:N,].reshape(m, n, k, -1).permute(3, 0, 1, 2) # (e, m, n, k)
|
429 |
+
pad_emb = torch.nn.functional.pad(trans_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
|
430 |
+
adpt_trans_emb = griddata(trans_grids0, pad_emb.float(), trans_grids1, method='linear')
|
431 |
+
adpt_trans_emb = adpt_trans_emb.reshape(m+2, n+2, k+2, E)[1:-1, 1:-1, 1:-1,]
|
432 |
+
|
433 |
+
# rotation
|
434 |
+
m1, n1, k1 = (self.num_bins["rotation"][k] for k in ["roll_bins", "pitch_bins", "yaw_bins"])
|
435 |
+
M = m1*n1*k1
|
436 |
+
rot_emb_data = emb_data[N : N + M,].reshape(m1, n1, k1, -1).permute(3, 0, 1, 2) # (e, m, n, k)
|
437 |
+
pad_emb = torch.nn.functional.pad(rot_emb_data, (1, 1, 1, 1, 1, 1), "replicate").permute(1, 2, 3, 0).reshape(-1, E)
|
438 |
+
adpt_rot_emb = griddata(rot_grids0, pad_emb.float(), rot_grids1, method='linear')
|
439 |
+
adpt_rot_emb = adpt_rot_emb.reshape(m1+2, n1+2, k1+2, E)[1:-1, 1:-1, 1:-1,]
|
440 |
+
|
441 |
+
# set data
|
442 |
+
device, dtype = embeddings.weight.data.device, embeddings.weight.data.dtype
|
443 |
+
embeddings.weight.data[:N] = torch.Tensor(adpt_trans_emb.reshape(-1, E), device=device).to(dtype)
|
444 |
+
embeddings.weight.data[N:N+M] = torch.Tensor(adpt_rot_emb.reshape(-1, E), device=device).to(dtype)
|
445 |
+
print("🚀 DONE! adapt spatial embedding to new gaussian distributation finished.")
|
446 |
+
print(embeddings.weight.data)
|
config.json
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../pretrained/2025-01-05_09-12-37_oxe_spatial_vla_paligemma3b_zoe_gsN8194_gpu64-204k",
|
3 |
+
"_vocab_size": 265347,
|
4 |
+
"action_token_begin_idx": 257153,
|
5 |
+
"architectures": [
|
6 |
+
"SpatialVLAForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_spatialvla.SpatialVLAConfig",
|
10 |
+
"AutoModel": "modeling_spatialvla.SpatialVLAForConditionalGeneration"
|
11 |
+
},
|
12 |
+
"bos_token_id": 2,
|
13 |
+
"ego3d_patch_reso": 2,
|
14 |
+
"eos_token_id": 1,
|
15 |
+
"hidden_size": 2048,
|
16 |
+
"image_token_index": 257152,
|
17 |
+
"model_type": "spatialvla",
|
18 |
+
"n_freqs": 8,
|
19 |
+
"num_hidden_layers": 26,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"projection_dim": 2304,
|
22 |
+
"spatial_token_num": 8194,
|
23 |
+
"text_config": {
|
24 |
+
"_attn_implementation_autoset": true,
|
25 |
+
"architectures": [
|
26 |
+
"Gemma2ForCausalLM"
|
27 |
+
],
|
28 |
+
"eos_token_id": [
|
29 |
+
1,
|
30 |
+
107
|
31 |
+
],
|
32 |
+
"hidden_act": "gelu_pytorch_tanh",
|
33 |
+
"hidden_size": 2304,
|
34 |
+
"intermediate_size": 9216,
|
35 |
+
"model_type": "gemma2",
|
36 |
+
"num_hidden_layers": 26,
|
37 |
+
"num_image_tokens": 256,
|
38 |
+
"num_key_value_heads": 4,
|
39 |
+
"tie_word_embeddings": false,
|
40 |
+
"torch_dtype": "bfloat16",
|
41 |
+
"vocab_size": 265347
|
42 |
+
},
|
43 |
+
"torch_dtype": "bfloat16",
|
44 |
+
"transformers_version": "4.47.0",
|
45 |
+
"use_spatial_token": true,
|
46 |
+
"use_vision_zoe": true,
|
47 |
+
"vision_config": {
|
48 |
+
"hidden_size": 1152,
|
49 |
+
"intermediate_size": 4304,
|
50 |
+
"model_type": "siglip_vision_model",
|
51 |
+
"num_attention_heads": 16,
|
52 |
+
"num_hidden_layers": 27,
|
53 |
+
"num_image_tokens": 256,
|
54 |
+
"num_positions": 256,
|
55 |
+
"patch_size": 14,
|
56 |
+
"projection_dim": 2304,
|
57 |
+
"torch_dtype": "bfloat16",
|
58 |
+
"vision_use_head": false
|
59 |
+
},
|
60 |
+
"vision_zoe_config": {
|
61 |
+
"_attn_implementation_autoset": true,
|
62 |
+
"_name_or_path": "Intel/zoedepth-nyu-kitti",
|
63 |
+
"add_cross_attention": false,
|
64 |
+
"add_projection": false,
|
65 |
+
"architectures": [
|
66 |
+
"ZoeDepthForDepthEstimation"
|
67 |
+
],
|
68 |
+
"attractor_alpha": 1000,
|
69 |
+
"attractor_gamma": 2,
|
70 |
+
"attractor_kind": "mean",
|
71 |
+
"backbone": null,
|
72 |
+
"backbone_config": {
|
73 |
+
"_attn_implementation_autoset": false,
|
74 |
+
"_name_or_path": "",
|
75 |
+
"add_cross_attention": false,
|
76 |
+
"add_fpn": false,
|
77 |
+
"architectures": null,
|
78 |
+
"attention_probs_dropout_prob": 0.0,
|
79 |
+
"auxiliary_channels": 256,
|
80 |
+
"auxiliary_concat_input": false,
|
81 |
+
"auxiliary_loss_weight": 0.4,
|
82 |
+
"auxiliary_num_convs": 1,
|
83 |
+
"bad_words_ids": null,
|
84 |
+
"begin_suppress_tokens": null,
|
85 |
+
"bos_token_id": null,
|
86 |
+
"chunk_size_feed_forward": 0,
|
87 |
+
"cross_attention_hidden_size": null,
|
88 |
+
"decoder_start_token_id": null,
|
89 |
+
"diversity_penalty": 0.0,
|
90 |
+
"do_sample": false,
|
91 |
+
"drop_path_rate": 0.1,
|
92 |
+
"early_stopping": false,
|
93 |
+
"encoder_no_repeat_ngram_size": 0,
|
94 |
+
"eos_token_id": null,
|
95 |
+
"exponential_decay_length_penalty": null,
|
96 |
+
"finetuning_task": null,
|
97 |
+
"forced_bos_token_id": null,
|
98 |
+
"forced_eos_token_id": null,
|
99 |
+
"hidden_act": "gelu",
|
100 |
+
"hidden_dropout_prob": 0.0,
|
101 |
+
"hidden_size": 1024,
|
102 |
+
"id2label": {
|
103 |
+
"0": "LABEL_0",
|
104 |
+
"1": "LABEL_1"
|
105 |
+
},
|
106 |
+
"image_size": 384,
|
107 |
+
"initializer_range": 0.02,
|
108 |
+
"intermediate_size": 4096,
|
109 |
+
"is_decoder": false,
|
110 |
+
"is_encoder_decoder": false,
|
111 |
+
"label2id": {
|
112 |
+
"LABEL_0": 0,
|
113 |
+
"LABEL_1": 1
|
114 |
+
},
|
115 |
+
"layer_norm_eps": 1e-12,
|
116 |
+
"layer_scale_init_value": 0.1,
|
117 |
+
"length_penalty": 1.0,
|
118 |
+
"max_length": 20,
|
119 |
+
"min_length": 0,
|
120 |
+
"model_type": "beit",
|
121 |
+
"no_repeat_ngram_size": 0,
|
122 |
+
"num_attention_heads": 16,
|
123 |
+
"num_beam_groups": 1,
|
124 |
+
"num_beams": 1,
|
125 |
+
"num_channels": 3,
|
126 |
+
"num_hidden_layers": 24,
|
127 |
+
"num_return_sequences": 1,
|
128 |
+
"out_features": [
|
129 |
+
"stage6",
|
130 |
+
"stage12",
|
131 |
+
"stage18",
|
132 |
+
"stage24"
|
133 |
+
],
|
134 |
+
"out_indices": [
|
135 |
+
6,
|
136 |
+
12,
|
137 |
+
18,
|
138 |
+
24
|
139 |
+
],
|
140 |
+
"output_attentions": false,
|
141 |
+
"output_hidden_states": false,
|
142 |
+
"output_scores": false,
|
143 |
+
"pad_token_id": null,
|
144 |
+
"patch_size": 16,
|
145 |
+
"pool_scales": [
|
146 |
+
1,
|
147 |
+
2,
|
148 |
+
3,
|
149 |
+
6
|
150 |
+
],
|
151 |
+
"prefix": null,
|
152 |
+
"problem_type": null,
|
153 |
+
"pruned_heads": {},
|
154 |
+
"remove_invalid_values": false,
|
155 |
+
"repetition_penalty": 1.0,
|
156 |
+
"reshape_hidden_states": false,
|
157 |
+
"return_dict": true,
|
158 |
+
"return_dict_in_generate": false,
|
159 |
+
"semantic_loss_ignore_index": 255,
|
160 |
+
"sep_token_id": null,
|
161 |
+
"stage_names": [
|
162 |
+
"stem",
|
163 |
+
"stage1",
|
164 |
+
"stage2",
|
165 |
+
"stage3",
|
166 |
+
"stage4",
|
167 |
+
"stage5",
|
168 |
+
"stage6",
|
169 |
+
"stage7",
|
170 |
+
"stage8",
|
171 |
+
"stage9",
|
172 |
+
"stage10",
|
173 |
+
"stage11",
|
174 |
+
"stage12",
|
175 |
+
"stage13",
|
176 |
+
"stage14",
|
177 |
+
"stage15",
|
178 |
+
"stage16",
|
179 |
+
"stage17",
|
180 |
+
"stage18",
|
181 |
+
"stage19",
|
182 |
+
"stage20",
|
183 |
+
"stage21",
|
184 |
+
"stage22",
|
185 |
+
"stage23",
|
186 |
+
"stage24"
|
187 |
+
],
|
188 |
+
"suppress_tokens": null,
|
189 |
+
"task_specific_params": null,
|
190 |
+
"temperature": 1.0,
|
191 |
+
"tf_legacy_loss": false,
|
192 |
+
"tie_encoder_decoder": false,
|
193 |
+
"tie_word_embeddings": true,
|
194 |
+
"tokenizer_class": null,
|
195 |
+
"top_k": 50,
|
196 |
+
"top_p": 1.0,
|
197 |
+
"torch_dtype": null,
|
198 |
+
"torchscript": false,
|
199 |
+
"typical_p": 1.0,
|
200 |
+
"use_absolute_position_embeddings": false,
|
201 |
+
"use_auxiliary_head": true,
|
202 |
+
"use_bfloat16": false,
|
203 |
+
"use_mask_token": false,
|
204 |
+
"use_mean_pooling": true,
|
205 |
+
"use_relative_position_bias": true,
|
206 |
+
"use_shared_relative_position_bias": false,
|
207 |
+
"vocab_size": 8192
|
208 |
+
},
|
209 |
+
"backbone_hidden_size": 1024,
|
210 |
+
"bad_words_ids": null,
|
211 |
+
"batch_norm_eps": 1e-05,
|
212 |
+
"begin_suppress_tokens": null,
|
213 |
+
"bin_centers_type": "softplus",
|
214 |
+
"bin_configurations": [
|
215 |
+
{
|
216 |
+
"max_depth": 10.0,
|
217 |
+
"min_depth": 0.001,
|
218 |
+
"n_bins": 64,
|
219 |
+
"name": "nyu"
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"max_depth": 80.0,
|
223 |
+
"min_depth": 0.001,
|
224 |
+
"n_bins": 64,
|
225 |
+
"name": "kitti"
|
226 |
+
}
|
227 |
+
],
|
228 |
+
"bin_embedding_dim": 128,
|
229 |
+
"bos_token_id": null,
|
230 |
+
"bottleneck_features": 256,
|
231 |
+
"chunk_size_feed_forward": 0,
|
232 |
+
"cross_attention_hidden_size": null,
|
233 |
+
"decoder_start_token_id": null,
|
234 |
+
"diversity_penalty": 0.0,
|
235 |
+
"do_sample": false,
|
236 |
+
"early_stopping": false,
|
237 |
+
"encoder_no_repeat_ngram_size": 0,
|
238 |
+
"eos_token_id": null,
|
239 |
+
"exponential_decay_length_penalty": null,
|
240 |
+
"finetuning_task": null,
|
241 |
+
"forced_bos_token_id": null,
|
242 |
+
"forced_eos_token_id": null,
|
243 |
+
"fusion_hidden_size": 256,
|
244 |
+
"head_in_index": -1,
|
245 |
+
"hidden_act": "gelu",
|
246 |
+
"id2label": {
|
247 |
+
"0": "LABEL_0",
|
248 |
+
"1": "LABEL_1"
|
249 |
+
},
|
250 |
+
"initializer_range": 0.02,
|
251 |
+
"is_decoder": false,
|
252 |
+
"is_encoder_decoder": false,
|
253 |
+
"label2id": {
|
254 |
+
"LABEL_0": 0,
|
255 |
+
"LABEL_1": 1
|
256 |
+
},
|
257 |
+
"length_penalty": 1.0,
|
258 |
+
"max_length": 20,
|
259 |
+
"max_temp": 50.0,
|
260 |
+
"min_length": 0,
|
261 |
+
"min_temp": 0.0212,
|
262 |
+
"model_type": "zoedepth",
|
263 |
+
"neck_hidden_sizes": [
|
264 |
+
256,
|
265 |
+
512,
|
266 |
+
1024,
|
267 |
+
1024
|
268 |
+
],
|
269 |
+
"no_repeat_ngram_size": 0,
|
270 |
+
"num_attractors": [
|
271 |
+
16,
|
272 |
+
8,
|
273 |
+
4,
|
274 |
+
1
|
275 |
+
],
|
276 |
+
"num_beam_groups": 1,
|
277 |
+
"num_beams": 1,
|
278 |
+
"num_patch_transformer_layers": 4,
|
279 |
+
"num_relative_features": 32,
|
280 |
+
"num_return_sequences": 1,
|
281 |
+
"output_attentions": false,
|
282 |
+
"output_hidden_states": false,
|
283 |
+
"output_scores": false,
|
284 |
+
"pad_token_id": null,
|
285 |
+
"patch_transformer_hidden_size": 128,
|
286 |
+
"patch_transformer_intermediate_size": 1024,
|
287 |
+
"patch_transformer_num_attention_heads": 4,
|
288 |
+
"prefix": null,
|
289 |
+
"problem_type": null,
|
290 |
+
"pruned_heads": {},
|
291 |
+
"readout_type": "project",
|
292 |
+
"reassemble_factors": [
|
293 |
+
4,
|
294 |
+
2,
|
295 |
+
1,
|
296 |
+
0.5
|
297 |
+
],
|
298 |
+
"remove_invalid_values": false,
|
299 |
+
"repetition_penalty": 1.0,
|
300 |
+
"return_dict": true,
|
301 |
+
"return_dict_in_generate": false,
|
302 |
+
"sep_token_id": null,
|
303 |
+
"suppress_tokens": null,
|
304 |
+
"task_specific_params": null,
|
305 |
+
"temperature": 1.0,
|
306 |
+
"tf_legacy_loss": false,
|
307 |
+
"tie_encoder_decoder": false,
|
308 |
+
"tie_word_embeddings": true,
|
309 |
+
"tokenizer_class": null,
|
310 |
+
"top_k": 50,
|
311 |
+
"top_p": 1.0,
|
312 |
+
"torch_dtype": "bfloat16",
|
313 |
+
"torchscript": false,
|
314 |
+
"typical_p": 1.0,
|
315 |
+
"use_batch_norm_in_fusion_residual": false,
|
316 |
+
"use_bfloat16": false,
|
317 |
+
"use_bias_in_fusion_residual": null,
|
318 |
+
"use_pretrained_backbone": false
|
319 |
+
}
|
320 |
+
}
|
configuration_spatialvla.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
|
3 |
+
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
|
4 |
+
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
|
5 |
+
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
6 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
7 |
+
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
|
8 |
+
# coding=utf-8
|
9 |
+
|
10 |
+
"""PaliGemmamodel configuration"""
|
11 |
+
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from transformers.configuration_utils import PretrainedConfig
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers import CONFIG_MAPPING, AutoConfig
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
class SpatialVLAConfig(PretrainedConfig):
|
23 |
+
r"""
|
24 |
+
This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an
|
25 |
+
PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration
|
26 |
+
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
|
27 |
+
|
28 |
+
e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b)
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vision_config (`PaliGemmaVisionConfig`, *optional*):
|
35 |
+
Custom vision config or dict
|
36 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
37 |
+
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
38 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
39 |
+
The ignore index for the loss function.
|
40 |
+
image_token_index (`int`, *optional*, defaults to 256000):
|
41 |
+
The image token index to encode the image prompt.
|
42 |
+
vocab_size (`int`, *optional*, defaults to 257152):
|
43 |
+
Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`]
|
45 |
+
projection_dim (`int`, *optional*, defaults to 2048):
|
46 |
+
Dimension of the multimodal projection space.
|
47 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
48 |
+
Dimension of the hidden layer of the Language model.
|
49 |
+
|
50 |
+
Example:
|
51 |
+
|
52 |
+
```python
|
53 |
+
>>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig
|
54 |
+
|
55 |
+
>>> # Initializing a Siglip-like vision config
|
56 |
+
>>> vision_config = SiglipVisionConfig()
|
57 |
+
|
58 |
+
>>> # Initializing a PaliGemma config
|
59 |
+
>>> text_config = GemmaConfig()
|
60 |
+
|
61 |
+
>>> # Initializing a PaliGemma paligemma-3b-224 style configuration
|
62 |
+
>>> configuration = PaliGemmaConfig(vision_config, text_config)
|
63 |
+
|
64 |
+
>>> # Initializing a model from the paligemma-3b-224 style configuration
|
65 |
+
>>> model = PaliGemmaForConditionalGeneration(configuration)
|
66 |
+
|
67 |
+
>>> # Accessing the model configuration
|
68 |
+
>>> configuration = model.config
|
69 |
+
```"""
|
70 |
+
|
71 |
+
model_type = "spatialvla"
|
72 |
+
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig, "vision_zoe_config": AutoConfig}
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vision_config=None,
|
77 |
+
text_config=None,
|
78 |
+
ignore_index=-100,
|
79 |
+
image_token_index=256000,
|
80 |
+
vocab_size=257152,
|
81 |
+
projection_dim=2048,
|
82 |
+
hidden_size=2048,
|
83 |
+
vision_zoe_config=None,
|
84 |
+
action_token_begin_idx=None,
|
85 |
+
spatial_token_num=259,
|
86 |
+
use_spatial_token=False,
|
87 |
+
ego3d_patch_reso=4,
|
88 |
+
n_freqs=8,
|
89 |
+
use_vision_zoe=True,
|
90 |
+
# wrap_lora=False,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
self._ignore_index = ignore_index
|
94 |
+
self.image_token_index = image_token_index
|
95 |
+
self._vocab_size = vocab_size
|
96 |
+
self.projection_dim = projection_dim
|
97 |
+
self.hidden_size = hidden_size
|
98 |
+
self.vision_config = vision_config
|
99 |
+
self.is_encoder_decoder = False
|
100 |
+
|
101 |
+
if isinstance(self.vision_config, dict):
|
102 |
+
vision_config["model_type"] = (
|
103 |
+
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
|
104 |
+
)
|
105 |
+
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
106 |
+
elif vision_config is None:
|
107 |
+
self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
|
108 |
+
intermediate_size=4096,
|
109 |
+
hidden_size=1152,
|
110 |
+
patch_size=14,
|
111 |
+
image_size=224,
|
112 |
+
num_hidden_layers=27,
|
113 |
+
num_attention_heads=16,
|
114 |
+
vocab_size=257152,
|
115 |
+
vision_use_head=False,
|
116 |
+
)
|
117 |
+
|
118 |
+
self.text_config = text_config
|
119 |
+
if isinstance(self.text_config, dict):
|
120 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma2"
|
121 |
+
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
122 |
+
elif text_config is None:
|
123 |
+
self.text_config = CONFIG_MAPPING["gemma2"](
|
124 |
+
hidden_size=2048,
|
125 |
+
num_hidden_layers=18,
|
126 |
+
intermediate_size=16384,
|
127 |
+
num_attention_heads=8,
|
128 |
+
num_key_value_heads=1,
|
129 |
+
is_encoder_decoder=False,
|
130 |
+
vocab_size=vocab_size,
|
131 |
+
)
|
132 |
+
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
|
133 |
+
self.vision_config.projection_dim = projection_dim
|
134 |
+
|
135 |
+
# vision zoe config
|
136 |
+
self.vision_zoe_config = vision_zoe_config
|
137 |
+
if isinstance(self.vision_zoe_config, dict):
|
138 |
+
vision_zoe_config["model_type"] = vision_zoe_config["model_type"] if "model_type" in vision_zoe_config else "zoedepth"
|
139 |
+
self.vision_zoe_config = CONFIG_MAPPING[vision_zoe_config["model_type"]](**vision_zoe_config)
|
140 |
+
else:
|
141 |
+
print(f"🔥 init from default configurations ... {self.vision_zoe_config}")
|
142 |
+
# BUG: initializing zoe in default cause key error
|
143 |
+
# self.vision_zoe_config = CONFIG_MAPPING["zoedepth"]()
|
144 |
+
pass
|
145 |
+
|
146 |
+
# NOTE: additional attributes
|
147 |
+
self.action_token_begin_idx = action_token_begin_idx
|
148 |
+
self.spatial_token_num = spatial_token_num
|
149 |
+
self.use_spatial_token = use_spatial_token
|
150 |
+
self.ego3d_patch_reso = ego3d_patch_reso
|
151 |
+
self.n_freqs = n_freqs
|
152 |
+
self.use_vision_zoe = use_vision_zoe
|
153 |
+
# self.wrap_lora = wrap_lora
|
154 |
+
|
155 |
+
super().__init__(**kwargs)
|
156 |
+
|
157 |
+
@property
|
158 |
+
def ignore_index(self):
|
159 |
+
warnings.warn(
|
160 |
+
"The `ignore_index` attribute is deprecated and will be removed in v4.47.",
|
161 |
+
FutureWarning,
|
162 |
+
)
|
163 |
+
return self._ignore_index
|
164 |
+
|
165 |
+
@ignore_index.setter
|
166 |
+
def ignore_index(self, value):
|
167 |
+
self._ignore_index = value
|
168 |
+
|
169 |
+
def to_dict(self):
|
170 |
+
output = super().to_dict()
|
171 |
+
output.pop("_ignore_index", None)
|
172 |
+
return output
|
dataset_statistics.json
ADDED
@@ -0,0 +1,3502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"fractal20220817_data/0.1.0": {
|
3 |
+
"action": {
|
4 |
+
"mean": [
|
5 |
+
0.006987507455050945,
|
6 |
+
0.006265853065997362,
|
7 |
+
-0.012625162489712238,
|
8 |
+
0.04333285242319107,
|
9 |
+
-0.005756276659667492,
|
10 |
+
0.0009130403632298112,
|
11 |
+
0.5354204773902893
|
12 |
+
],
|
13 |
+
"std": [
|
14 |
+
0.06921109557151794,
|
15 |
+
0.05970889702439308,
|
16 |
+
0.0735311210155487,
|
17 |
+
0.1561058759689331,
|
18 |
+
0.1316441297531128,
|
19 |
+
0.14593777060508728,
|
20 |
+
0.49711623787879944
|
21 |
+
],
|
22 |
+
"max": [
|
23 |
+
2.9984593391418457,
|
24 |
+
22.09052848815918,
|
25 |
+
2.7507524490356445,
|
26 |
+
1.570636510848999,
|
27 |
+
1.5321086645126343,
|
28 |
+
1.5691522359848022,
|
29 |
+
1.0
|
30 |
+
],
|
31 |
+
"min": [
|
32 |
+
-2.0204520225524902,
|
33 |
+
-5.497899532318115,
|
34 |
+
-2.031663417816162,
|
35 |
+
-1.569917917251587,
|
36 |
+
-1.569892168045044,
|
37 |
+
-1.570419430732727,
|
38 |
+
0.0
|
39 |
+
],
|
40 |
+
"q01": [
|
41 |
+
-0.22453527510166169,
|
42 |
+
-0.14820013284683228,
|
43 |
+
-0.231589707583189,
|
44 |
+
-0.3517994859814644,
|
45 |
+
-0.4193011274933815,
|
46 |
+
-0.43643461108207704,
|
47 |
+
0.0
|
48 |
+
],
|
49 |
+
"q99": [
|
50 |
+
0.17824687153100965,
|
51 |
+
0.14938379630446405,
|
52 |
+
0.21842354819178575,
|
53 |
+
0.5892666035890578,
|
54 |
+
0.35272657424211445,
|
55 |
+
0.44796681255102094,
|
56 |
+
1.0
|
57 |
+
],
|
58 |
+
"mask": [
|
59 |
+
true,
|
60 |
+
true,
|
61 |
+
true,
|
62 |
+
true,
|
63 |
+
true,
|
64 |
+
true,
|
65 |
+
false
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"proprio": {
|
69 |
+
"mean": [
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0
|
77 |
+
],
|
78 |
+
"std": [
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
0.0
|
86 |
+
],
|
87 |
+
"max": [
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0
|
95 |
+
],
|
96 |
+
"min": [
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
0.0,
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0
|
104 |
+
],
|
105 |
+
"q01": [
|
106 |
+
0.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
"q99": [
|
115 |
+
0.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0
|
122 |
+
]
|
123 |
+
},
|
124 |
+
"num_transitions": 3786400,
|
125 |
+
"num_trajectories": 87212
|
126 |
+
},
|
127 |
+
"kuka/0.1.0": {
|
128 |
+
"action": {
|
129 |
+
"mean": [
|
130 |
+
-0.00046687963185831904,
|
131 |
+
0.00040137648466043174,
|
132 |
+
-0.0012807906605303288,
|
133 |
+
0.0,
|
134 |
+
0.0,
|
135 |
+
-0.037225183099508286,
|
136 |
+
0.4131543040275574
|
137 |
+
],
|
138 |
+
"std": [
|
139 |
+
0.020832739770412445,
|
140 |
+
0.029158642515540123,
|
141 |
+
0.0642285868525505,
|
142 |
+
0.0,
|
143 |
+
0.0,
|
144 |
+
0.14224639534950256,
|
145 |
+
0.4908643662929535
|
146 |
+
],
|
147 |
+
"max": [
|
148 |
+
0.1697135865688324,
|
149 |
+
0.2777623236179352,
|
150 |
+
0.43710532784461975,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.9684287309646606,
|
154 |
+
1.0
|
155 |
+
],
|
156 |
+
"min": [
|
157 |
+
-0.159867063164711,
|
158 |
+
-0.2892282009124756,
|
159 |
+
-0.2795473635196686,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
-1.9875637292861938,
|
163 |
+
0.0
|
164 |
+
],
|
165 |
+
"q01": [
|
166 |
+
-0.06619441494345665,
|
167 |
+
-0.08713878810405731,
|
168 |
+
-0.15083016991615295,
|
169 |
+
0.0,
|
170 |
+
0.0,
|
171 |
+
-0.5415697038173676,
|
172 |
+
0.0
|
173 |
+
],
|
174 |
+
"q99": [
|
175 |
+
0.06601839080452929,
|
176 |
+
0.08732476785779003,
|
177 |
+
0.18168179214000715,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.2923380345106127,
|
181 |
+
1.0
|
182 |
+
],
|
183 |
+
"mask": [
|
184 |
+
true,
|
185 |
+
true,
|
186 |
+
true,
|
187 |
+
true,
|
188 |
+
true,
|
189 |
+
true,
|
190 |
+
false
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"proprio": {
|
194 |
+
"mean": [
|
195 |
+
0.0,
|
196 |
+
0.0,
|
197 |
+
0.0,
|
198 |
+
0.0,
|
199 |
+
0.0,
|
200 |
+
0.0,
|
201 |
+
0.0
|
202 |
+
],
|
203 |
+
"std": [
|
204 |
+
0.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
0.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
"max": [
|
213 |
+
0.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
0.0,
|
219 |
+
0.0
|
220 |
+
],
|
221 |
+
"min": [
|
222 |
+
0.0,
|
223 |
+
0.0,
|
224 |
+
0.0,
|
225 |
+
0.0,
|
226 |
+
0.0,
|
227 |
+
0.0,
|
228 |
+
0.0
|
229 |
+
],
|
230 |
+
"q01": [
|
231 |
+
0.0,
|
232 |
+
0.0,
|
233 |
+
0.0,
|
234 |
+
0.0,
|
235 |
+
0.0,
|
236 |
+
0.0,
|
237 |
+
0.0
|
238 |
+
],
|
239 |
+
"q99": [
|
240 |
+
0.0,
|
241 |
+
0.0,
|
242 |
+
0.0,
|
243 |
+
0.0,
|
244 |
+
0.0,
|
245 |
+
0.0,
|
246 |
+
0.0
|
247 |
+
]
|
248 |
+
},
|
249 |
+
"num_transitions": 2455879,
|
250 |
+
"num_trajectories": 209880
|
251 |
+
},
|
252 |
+
"bridge_orig/1.0.0": {
|
253 |
+
"action": {
|
254 |
+
"mean": [
|
255 |
+
0.00023341714404523373,
|
256 |
+
0.00013004327774979174,
|
257 |
+
-0.00012762591359205544,
|
258 |
+
-0.0001556579809403047,
|
259 |
+
-0.00040393328526988626,
|
260 |
+
0.00023558337124995887,
|
261 |
+
0.5764582753181458
|
262 |
+
],
|
263 |
+
"std": [
|
264 |
+
0.009765734896063805,
|
265 |
+
0.013689505867660046,
|
266 |
+
0.012667152099311352,
|
267 |
+
0.028534479439258575,
|
268 |
+
0.03063790127635002,
|
269 |
+
0.07691770792007446,
|
270 |
+
0.4973658621311188
|
271 |
+
],
|
272 |
+
"max": [
|
273 |
+
0.41691166162490845,
|
274 |
+
0.25864794850349426,
|
275 |
+
0.21218234300613403,
|
276 |
+
3.122201919555664,
|
277 |
+
1.8618112802505493,
|
278 |
+
6.280478477478027,
|
279 |
+
1.0
|
280 |
+
],
|
281 |
+
"min": [
|
282 |
+
-0.4007510244846344,
|
283 |
+
-0.13874775171279907,
|
284 |
+
-0.22553899884223938,
|
285 |
+
-3.2010786533355713,
|
286 |
+
-1.8618112802505493,
|
287 |
+
-6.279075622558594,
|
288 |
+
0.0
|
289 |
+
],
|
290 |
+
"q01": [
|
291 |
+
-0.02872725307941437,
|
292 |
+
-0.04170349963009357,
|
293 |
+
-0.026093858778476715,
|
294 |
+
-0.08092105075716972,
|
295 |
+
-0.09288699507713317,
|
296 |
+
-0.20718276381492615,
|
297 |
+
0.0
|
298 |
+
],
|
299 |
+
"q99": [
|
300 |
+
0.028309678435325586,
|
301 |
+
0.040855254605412394,
|
302 |
+
0.040161586627364146,
|
303 |
+
0.08192047759890528,
|
304 |
+
0.07792850524187081,
|
305 |
+
0.20382574498653397,
|
306 |
+
1.0
|
307 |
+
],
|
308 |
+
"mask": [
|
309 |
+
true,
|
310 |
+
true,
|
311 |
+
true,
|
312 |
+
true,
|
313 |
+
true,
|
314 |
+
true,
|
315 |
+
false
|
316 |
+
]
|
317 |
+
},
|
318 |
+
"proprio": {
|
319 |
+
"mean": [
|
320 |
+
0.0,
|
321 |
+
0.0,
|
322 |
+
0.0,
|
323 |
+
0.0,
|
324 |
+
0.0,
|
325 |
+
0.0,
|
326 |
+
0.0
|
327 |
+
],
|
328 |
+
"std": [
|
329 |
+
0.0,
|
330 |
+
0.0,
|
331 |
+
0.0,
|
332 |
+
0.0,
|
333 |
+
0.0,
|
334 |
+
0.0,
|
335 |
+
0.0
|
336 |
+
],
|
337 |
+
"max": [
|
338 |
+
0.0,
|
339 |
+
0.0,
|
340 |
+
0.0,
|
341 |
+
0.0,
|
342 |
+
0.0,
|
343 |
+
0.0,
|
344 |
+
0.0
|
345 |
+
],
|
346 |
+
"min": [
|
347 |
+
0.0,
|
348 |
+
0.0,
|
349 |
+
0.0,
|
350 |
+
0.0,
|
351 |
+
0.0,
|
352 |
+
0.0,
|
353 |
+
0.0
|
354 |
+
],
|
355 |
+
"q01": [
|
356 |
+
0.0,
|
357 |
+
0.0,
|
358 |
+
0.0,
|
359 |
+
0.0,
|
360 |
+
0.0,
|
361 |
+
0.0,
|
362 |
+
0.0
|
363 |
+
],
|
364 |
+
"q99": [
|
365 |
+
0.0,
|
366 |
+
0.0,
|
367 |
+
0.0,
|
368 |
+
0.0,
|
369 |
+
0.0,
|
370 |
+
0.0,
|
371 |
+
0.0
|
372 |
+
]
|
373 |
+
},
|
374 |
+
"num_transitions": 2135463,
|
375 |
+
"num_trajectories": 60064
|
376 |
+
},
|
377 |
+
"taco_play/0.1.0": {
|
378 |
+
"action": {
|
379 |
+
"mean": [
|
380 |
+
-0.0038459226489067078,
|
381 |
+
0.009671436622738838,
|
382 |
+
0.01278059184551239,
|
383 |
+
-0.0054037850350141525,
|
384 |
+
-0.009606562554836273,
|
385 |
+
-0.0024807206355035305,
|
386 |
+
0.4263913035392761
|
387 |
+
],
|
388 |
+
"std": [
|
389 |
+
0.23254045844078064,
|
390 |
+
0.3629826307296753,
|
391 |
+
0.2869291603565216,
|
392 |
+
0.261770635843277,
|
393 |
+
0.24388927221298218,
|
394 |
+
0.5216501355171204,
|
395 |
+
0.49469029903411865
|
396 |
+
],
|
397 |
+
"max": [
|
398 |
+
1.4915844202041626,
|
399 |
+
2.1842432022094727,
|
400 |
+
2.6836395263671875,
|
401 |
+
5.035226821899414,
|
402 |
+
2.665864944458008,
|
403 |
+
4.250768661499023,
|
404 |
+
1.0
|
405 |
+
],
|
406 |
+
"min": [
|
407 |
+
-4.242457866668701,
|
408 |
+
-3.192805051803589,
|
409 |
+
-1.3371467590332031,
|
410 |
+
-4.202683448791504,
|
411 |
+
-2.6722638607025146,
|
412 |
+
-3.3467135429382324,
|
413 |
+
0.0
|
414 |
+
],
|
415 |
+
"q01": [
|
416 |
+
-0.7106140398979186,
|
417 |
+
-1.056944659948349,
|
418 |
+
-0.5878450274467468,
|
419 |
+
-0.7682853937149048,
|
420 |
+
-0.7180147767066956,
|
421 |
+
-1.5527938604354858,
|
422 |
+
0.0
|
423 |
+
],
|
424 |
+
"q99": [
|
425 |
+
0.6482916426658629,
|
426 |
+
1.0051310062408447,
|
427 |
+
0.9480248689651489,
|
428 |
+
0.6926478147506714,
|
429 |
+
0.6351067513227462,
|
430 |
+
1.628010264635086,
|
431 |
+
1.0
|
432 |
+
],
|
433 |
+
"mask": [
|
434 |
+
true,
|
435 |
+
true,
|
436 |
+
true,
|
437 |
+
true,
|
438 |
+
true,
|
439 |
+
true,
|
440 |
+
false
|
441 |
+
]
|
442 |
+
},
|
443 |
+
"proprio": {
|
444 |
+
"mean": [
|
445 |
+
0.0,
|
446 |
+
0.0,
|
447 |
+
0.0,
|
448 |
+
0.0,
|
449 |
+
0.0,
|
450 |
+
0.0,
|
451 |
+
0.0
|
452 |
+
],
|
453 |
+
"std": [
|
454 |
+
0.0,
|
455 |
+
0.0,
|
456 |
+
0.0,
|
457 |
+
0.0,
|
458 |
+
0.0,
|
459 |
+
0.0,
|
460 |
+
0.0
|
461 |
+
],
|
462 |
+
"max": [
|
463 |
+
0.0,
|
464 |
+
0.0,
|
465 |
+
0.0,
|
466 |
+
0.0,
|
467 |
+
0.0,
|
468 |
+
0.0,
|
469 |
+
0.0
|
470 |
+
],
|
471 |
+
"min": [
|
472 |
+
0.0,
|
473 |
+
0.0,
|
474 |
+
0.0,
|
475 |
+
0.0,
|
476 |
+
0.0,
|
477 |
+
0.0,
|
478 |
+
0.0
|
479 |
+
],
|
480 |
+
"q01": [
|
481 |
+
0.0,
|
482 |
+
0.0,
|
483 |
+
0.0,
|
484 |
+
0.0,
|
485 |
+
0.0,
|
486 |
+
0.0,
|
487 |
+
0.0
|
488 |
+
],
|
489 |
+
"q99": [
|
490 |
+
0.0,
|
491 |
+
0.0,
|
492 |
+
0.0,
|
493 |
+
0.0,
|
494 |
+
0.0,
|
495 |
+
0.0,
|
496 |
+
0.0
|
497 |
+
]
|
498 |
+
},
|
499 |
+
"num_transitions": 237798,
|
500 |
+
"num_trajectories": 3603
|
501 |
+
},
|
502 |
+
"jaco_play/0.1.0": {
|
503 |
+
"action": {
|
504 |
+
"mean": [
|
505 |
+
0.0009658387862145901,
|
506 |
+
-0.005800850689411163,
|
507 |
+
-0.003950685728341341,
|
508 |
+
0.0,
|
509 |
+
0.0,
|
510 |
+
0.0,
|
511 |
+
0.34934908151626587
|
512 |
+
],
|
513 |
+
"std": [
|
514 |
+
0.12234985828399658,
|
515 |
+
0.09678783267736435,
|
516 |
+
0.1115543395280838,
|
517 |
+
0.0,
|
518 |
+
0.0,
|
519 |
+
0.0,
|
520 |
+
0.47682321071624756
|
521 |
+
],
|
522 |
+
"max": [
|
523 |
+
0.20000000298023224,
|
524 |
+
0.20000000298023224,
|
525 |
+
0.20000000298023224,
|
526 |
+
0.0,
|
527 |
+
0.0,
|
528 |
+
0.0,
|
529 |
+
1.0
|
530 |
+
],
|
531 |
+
"min": [
|
532 |
+
-0.20000000298023224,
|
533 |
+
-0.20000000298023224,
|
534 |
+
-0.20000000298023224,
|
535 |
+
0.0,
|
536 |
+
0.0,
|
537 |
+
0.0,
|
538 |
+
0.0
|
539 |
+
],
|
540 |
+
"q01": [
|
541 |
+
-0.20000000298023224,
|
542 |
+
-0.20000000298023224,
|
543 |
+
-0.20000000298023224,
|
544 |
+
0.0,
|
545 |
+
0.0,
|
546 |
+
0.0,
|
547 |
+
0.0
|
548 |
+
],
|
549 |
+
"q99": [
|
550 |
+
0.20000000298023224,
|
551 |
+
0.20000000298023224,
|
552 |
+
0.20000000298023224,
|
553 |
+
0.0,
|
554 |
+
0.0,
|
555 |
+
0.0,
|
556 |
+
1.0
|
557 |
+
],
|
558 |
+
"mask": [
|
559 |
+
true,
|
560 |
+
true,
|
561 |
+
true,
|
562 |
+
true,
|
563 |
+
true,
|
564 |
+
true,
|
565 |
+
false
|
566 |
+
]
|
567 |
+
},
|
568 |
+
"proprio": {
|
569 |
+
"mean": [
|
570 |
+
0.0,
|
571 |
+
0.0,
|
572 |
+
0.0,
|
573 |
+
0.0,
|
574 |
+
0.0,
|
575 |
+
0.0,
|
576 |
+
0.0
|
577 |
+
],
|
578 |
+
"std": [
|
579 |
+
0.0,
|
580 |
+
0.0,
|
581 |
+
0.0,
|
582 |
+
0.0,
|
583 |
+
0.0,
|
584 |
+
0.0,
|
585 |
+
0.0
|
586 |
+
],
|
587 |
+
"max": [
|
588 |
+
0.0,
|
589 |
+
0.0,
|
590 |
+
0.0,
|
591 |
+
0.0,
|
592 |
+
0.0,
|
593 |
+
0.0,
|
594 |
+
0.0
|
595 |
+
],
|
596 |
+
"min": [
|
597 |
+
0.0,
|
598 |
+
0.0,
|
599 |
+
0.0,
|
600 |
+
0.0,
|
601 |
+
0.0,
|
602 |
+
0.0,
|
603 |
+
0.0
|
604 |
+
],
|
605 |
+
"q01": [
|
606 |
+
0.0,
|
607 |
+
0.0,
|
608 |
+
0.0,
|
609 |
+
0.0,
|
610 |
+
0.0,
|
611 |
+
0.0,
|
612 |
+
0.0
|
613 |
+
],
|
614 |
+
"q99": [
|
615 |
+
0.0,
|
616 |
+
0.0,
|
617 |
+
0.0,
|
618 |
+
0.0,
|
619 |
+
0.0,
|
620 |
+
0.0,
|
621 |
+
0.0
|
622 |
+
]
|
623 |
+
},
|
624 |
+
"num_transitions": 77965,
|
625 |
+
"num_trajectories": 1085
|
626 |
+
},
|
627 |
+
"berkeley_cable_routing/0.1.0": {
|
628 |
+
"action": {
|
629 |
+
"mean": [
|
630 |
+
-0.07139858603477478,
|
631 |
+
0.023608991876244545,
|
632 |
+
0.10241956263780594,
|
633 |
+
0.0,
|
634 |
+
0.0,
|
635 |
+
0.04967105761170387,
|
636 |
+
0.0
|
637 |
+
],
|
638 |
+
"std": [
|
639 |
+
0.18155010044574738,
|
640 |
+
0.18109896779060364,
|
641 |
+
0.21220752596855164,
|
642 |
+
0.0,
|
643 |
+
0.0,
|
644 |
+
0.3475516438484192,
|
645 |
+
0.0
|
646 |
+
],
|
647 |
+
"max": [
|
648 |
+
0.9633283019065857,
|
649 |
+
1.0,
|
650 |
+
1.0,
|
651 |
+
0.0,
|
652 |
+
0.0,
|
653 |
+
1.0,
|
654 |
+
0.0
|
655 |
+
],
|
656 |
+
"min": [
|
657 |
+
-0.9809081554412842,
|
658 |
+
-0.9554349184036255,
|
659 |
+
-0.9994775056838989,
|
660 |
+
0.0,
|
661 |
+
0.0,
|
662 |
+
-1.0,
|
663 |
+
0.0
|
664 |
+
],
|
665 |
+
"q01": [
|
666 |
+
-0.5534318816661835,
|
667 |
+
-0.4797285574674606,
|
668 |
+
-0.5314934802055359,
|
669 |
+
0.0,
|
670 |
+
0.0,
|
671 |
+
-0.8855219376087189,
|
672 |
+
0.0
|
673 |
+
],
|
674 |
+
"q99": [
|
675 |
+
0.42652835428714786,
|
676 |
+
0.5000944086909298,
|
677 |
+
0.639823433756829,
|
678 |
+
0.0,
|
679 |
+
0.0,
|
680 |
+
0.984243879914284,
|
681 |
+
0.0
|
682 |
+
],
|
683 |
+
"mask": [
|
684 |
+
true,
|
685 |
+
true,
|
686 |
+
true,
|
687 |
+
true,
|
688 |
+
true,
|
689 |
+
true,
|
690 |
+
false
|
691 |
+
]
|
692 |
+
},
|
693 |
+
"proprio": {
|
694 |
+
"mean": [
|
695 |
+
0.0,
|
696 |
+
0.0,
|
697 |
+
0.0,
|
698 |
+
0.0,
|
699 |
+
0.0,
|
700 |
+
0.0,
|
701 |
+
0.0
|
702 |
+
],
|
703 |
+
"std": [
|
704 |
+
0.0,
|
705 |
+
0.0,
|
706 |
+
0.0,
|
707 |
+
0.0,
|
708 |
+
0.0,
|
709 |
+
0.0,
|
710 |
+
0.0
|
711 |
+
],
|
712 |
+
"max": [
|
713 |
+
0.0,
|
714 |
+
0.0,
|
715 |
+
0.0,
|
716 |
+
0.0,
|
717 |
+
0.0,
|
718 |
+
0.0,
|
719 |
+
0.0
|
720 |
+
],
|
721 |
+
"min": [
|
722 |
+
0.0,
|
723 |
+
0.0,
|
724 |
+
0.0,
|
725 |
+
0.0,
|
726 |
+
0.0,
|
727 |
+
0.0,
|
728 |
+
0.0
|
729 |
+
],
|
730 |
+
"q01": [
|
731 |
+
0.0,
|
732 |
+
0.0,
|
733 |
+
0.0,
|
734 |
+
0.0,
|
735 |
+
0.0,
|
736 |
+
0.0,
|
737 |
+
0.0
|
738 |
+
],
|
739 |
+
"q99": [
|
740 |
+
0.0,
|
741 |
+
0.0,
|
742 |
+
0.0,
|
743 |
+
0.0,
|
744 |
+
0.0,
|
745 |
+
0.0,
|
746 |
+
0.0
|
747 |
+
]
|
748 |
+
},
|
749 |
+
"num_transitions": 42328,
|
750 |
+
"num_trajectories": 1647
|
751 |
+
},
|
752 |
+
"roboturk/0.1.0": {
|
753 |
+
"action": {
|
754 |
+
"mean": [
|
755 |
+
0.001444889116100967,
|
756 |
+
-0.0015945355407893658,
|
757 |
+
-0.0011753803119063377,
|
758 |
+
0.002301239175722003,
|
759 |
+
-0.0009382442804053426,
|
760 |
+
-0.00011485860886750743,
|
761 |
+
0.5746025443077087
|
762 |
+
],
|
763 |
+
"std": [
|
764 |
+
0.0493537075817585,
|
765 |
+
0.06354564428329468,
|
766 |
+
0.06116492301225662,
|
767 |
+
0.0955340564250946,
|
768 |
+
0.08420011401176453,
|
769 |
+
0.06517910957336426,
|
770 |
+
0.4945177137851715
|
771 |
+
],
|
772 |
+
"max": [
|
773 |
+
0.39124172925949097,
|
774 |
+
0.4601028263568878,
|
775 |
+
0.4870833456516266,
|
776 |
+
1.816888689994812,
|
777 |
+
1.8240282535552979,
|
778 |
+
1.4824820756912231,
|
779 |
+
1.0
|
780 |
+
],
|
781 |
+
"min": [
|
782 |
+
-0.6546999216079712,
|
783 |
+
-0.6365841031074524,
|
784 |
+
-0.4217723608016968,
|
785 |
+
-1.6695482730865479,
|
786 |
+
-1.8023357391357422,
|
787 |
+
-1.4630827903747559,
|
788 |
+
0.0
|
789 |
+
],
|
790 |
+
"q01": [
|
791 |
+
-0.1342635464668274,
|
792 |
+
-0.19996687173843383,
|
793 |
+
-0.1482972100377083,
|
794 |
+
-0.20720748245716095,
|
795 |
+
-0.09676413893699647,
|
796 |
+
-0.18075634717941286,
|
797 |
+
0.0
|
798 |
+
],
|
799 |
+
"q99": [
|
800 |
+
0.14956976801157001,
|
801 |
+
0.1805950567126275,
|
802 |
+
0.18841815620660796,
|
803 |
+
0.21615413755178453,
|
804 |
+
0.09457383215427405,
|
805 |
+
0.18543301910162005,
|
806 |
+
1.0
|
807 |
+
],
|
808 |
+
"mask": [
|
809 |
+
true,
|
810 |
+
true,
|
811 |
+
true,
|
812 |
+
true,
|
813 |
+
true,
|
814 |
+
true,
|
815 |
+
false
|
816 |
+
]
|
817 |
+
},
|
818 |
+
"proprio": {
|
819 |
+
"mean": [
|
820 |
+
0.0,
|
821 |
+
0.0,
|
822 |
+
0.0,
|
823 |
+
0.0,
|
824 |
+
0.0,
|
825 |
+
0.0,
|
826 |
+
0.0
|
827 |
+
],
|
828 |
+
"std": [
|
829 |
+
0.0,
|
830 |
+
0.0,
|
831 |
+
0.0,
|
832 |
+
0.0,
|
833 |
+
0.0,
|
834 |
+
0.0,
|
835 |
+
0.0
|
836 |
+
],
|
837 |
+
"max": [
|
838 |
+
0.0,
|
839 |
+
0.0,
|
840 |
+
0.0,
|
841 |
+
0.0,
|
842 |
+
0.0,
|
843 |
+
0.0,
|
844 |
+
0.0
|
845 |
+
],
|
846 |
+
"min": [
|
847 |
+
0.0,
|
848 |
+
0.0,
|
849 |
+
0.0,
|
850 |
+
0.0,
|
851 |
+
0.0,
|
852 |
+
0.0,
|
853 |
+
0.0
|
854 |
+
],
|
855 |
+
"q01": [
|
856 |
+
0.0,
|
857 |
+
0.0,
|
858 |
+
0.0,
|
859 |
+
0.0,
|
860 |
+
0.0,
|
861 |
+
0.0,
|
862 |
+
0.0
|
863 |
+
],
|
864 |
+
"q99": [
|
865 |
+
0.0,
|
866 |
+
0.0,
|
867 |
+
0.0,
|
868 |
+
0.0,
|
869 |
+
0.0,
|
870 |
+
0.0,
|
871 |
+
0.0
|
872 |
+
]
|
873 |
+
},
|
874 |
+
"num_transitions": 187507,
|
875 |
+
"num_trajectories": 1995
|
876 |
+
},
|
877 |
+
"viola/0.1.0": {
|
878 |
+
"action": {
|
879 |
+
"mean": [
|
880 |
+
0.04761853069067001,
|
881 |
+
-0.029204534366726875,
|
882 |
+
0.055867329239845276,
|
883 |
+
-0.0026185200549662113,
|
884 |
+
0.006867341697216034,
|
885 |
+
-0.016821356490254402,
|
886 |
+
0.7323777675628662
|
887 |
+
],
|
888 |
+
"std": [
|
889 |
+
0.39157867431640625,
|
890 |
+
0.40765219926834106,
|
891 |
+
0.40077903866767883,
|
892 |
+
0.10023998469114304,
|
893 |
+
0.08443189412355423,
|
894 |
+
0.10375089943408966,
|
895 |
+
0.442600816488266
|
896 |
+
],
|
897 |
+
"max": [
|
898 |
+
1.0,
|
899 |
+
1.0,
|
900 |
+
1.0,
|
901 |
+
0.375,
|
902 |
+
0.36321428418159485,
|
903 |
+
0.375,
|
904 |
+
1.0
|
905 |
+
],
|
906 |
+
"min": [
|
907 |
+
-1.0,
|
908 |
+
-1.0,
|
909 |
+
-1.0,
|
910 |
+
-0.375,
|
911 |
+
-0.375,
|
912 |
+
-0.375,
|
913 |
+
0.0
|
914 |
+
],
|
915 |
+
"q01": [
|
916 |
+
-0.9628571271896362,
|
917 |
+
-1.0,
|
918 |
+
-1.0,
|
919 |
+
-0.26249998807907104,
|
920 |
+
-0.21321429312229156,
|
921 |
+
-0.3385714292526245,
|
922 |
+
0.0
|
923 |
+
],
|
924 |
+
"q99": [
|
925 |
+
0.9114285707473755,
|
926 |
+
0.868571400642395,
|
927 |
+
1.0,
|
928 |
+
0.2817857265472412,
|
929 |
+
0.2239285707473755,
|
930 |
+
0.3557142913341522,
|
931 |
+
1.0
|
932 |
+
],
|
933 |
+
"mask": [
|
934 |
+
true,
|
935 |
+
true,
|
936 |
+
true,
|
937 |
+
true,
|
938 |
+
true,
|
939 |
+
true,
|
940 |
+
false
|
941 |
+
]
|
942 |
+
},
|
943 |
+
"proprio": {
|
944 |
+
"mean": [
|
945 |
+
0.0,
|
946 |
+
0.0,
|
947 |
+
0.0,
|
948 |
+
0.0,
|
949 |
+
0.0,
|
950 |
+
0.0,
|
951 |
+
0.0
|
952 |
+
],
|
953 |
+
"std": [
|
954 |
+
0.0,
|
955 |
+
0.0,
|
956 |
+
0.0,
|
957 |
+
0.0,
|
958 |
+
0.0,
|
959 |
+
0.0,
|
960 |
+
0.0
|
961 |
+
],
|
962 |
+
"max": [
|
963 |
+
0.0,
|
964 |
+
0.0,
|
965 |
+
0.0,
|
966 |
+
0.0,
|
967 |
+
0.0,
|
968 |
+
0.0,
|
969 |
+
0.0
|
970 |
+
],
|
971 |
+
"min": [
|
972 |
+
0.0,
|
973 |
+
0.0,
|
974 |
+
0.0,
|
975 |
+
0.0,
|
976 |
+
0.0,
|
977 |
+
0.0,
|
978 |
+
0.0
|
979 |
+
],
|
980 |
+
"q01": [
|
981 |
+
0.0,
|
982 |
+
0.0,
|
983 |
+
0.0,
|
984 |
+
0.0,
|
985 |
+
0.0,
|
986 |
+
0.0,
|
987 |
+
0.0
|
988 |
+
],
|
989 |
+
"q99": [
|
990 |
+
0.0,
|
991 |
+
0.0,
|
992 |
+
0.0,
|
993 |
+
0.0,
|
994 |
+
0.0,
|
995 |
+
0.0,
|
996 |
+
0.0
|
997 |
+
]
|
998 |
+
},
|
999 |
+
"num_transitions": 76324,
|
1000 |
+
"num_trajectories": 150
|
1001 |
+
},
|
1002 |
+
"berkeley_autolab_ur5/0.1.0": {
|
1003 |
+
"action": {
|
1004 |
+
"mean": [
|
1005 |
+
0.0005683613708242774,
|
1006 |
+
0.0012176961172372103,
|
1007 |
+
-0.0005296385497786105,
|
1008 |
+
0.00021029777417425066,
|
1009 |
+
6.069485243642703e-05,
|
1010 |
+
0.0012049867073073983,
|
1011 |
+
0.6298308372497559
|
1012 |
+
],
|
1013 |
+
"std": [
|
1014 |
+
0.011533073149621487,
|
1015 |
+
0.007990497164428234,
|
1016 |
+
0.009577799588441849,
|
1017 |
+
0.009432999417185783,
|
1018 |
+
0.016427574679255486,
|
1019 |
+
0.011054049246013165,
|
1020 |
+
0.482679545879364
|
1021 |
+
],
|
1022 |
+
"max": [
|
1023 |
+
0.019999999552965164,
|
1024 |
+
0.019999999552965164,
|
1025 |
+
0.019999999552965164,
|
1026 |
+
0.06666667014360428,
|
1027 |
+
0.06666667014360428,
|
1028 |
+
0.06666667014360428,
|
1029 |
+
1.0
|
1030 |
+
],
|
1031 |
+
"min": [
|
1032 |
+
-0.019999999552965164,
|
1033 |
+
-0.019999999552965164,
|
1034 |
+
-0.019999999552965164,
|
1035 |
+
-0.06666667014360428,
|
1036 |
+
-0.06666667014360428,
|
1037 |
+
-0.06666667014360428,
|
1038 |
+
0.0
|
1039 |
+
],
|
1040 |
+
"q01": [
|
1041 |
+
-0.019999999552965164,
|
1042 |
+
-0.019999999552965164,
|
1043 |
+
-0.019999999552965164,
|
1044 |
+
-0.02628571353852749,
|
1045 |
+
-0.06666667014360428,
|
1046 |
+
-0.03847619146108627,
|
1047 |
+
0.0
|
1048 |
+
],
|
1049 |
+
"q99": [
|
1050 |
+
0.019999999552965164,
|
1051 |
+
0.019999999552965164,
|
1052 |
+
0.019999999552965164,
|
1053 |
+
0.031809523701667786,
|
1054 |
+
0.06666667014360428,
|
1055 |
+
0.036571428179740906,
|
1056 |
+
1.0
|
1057 |
+
],
|
1058 |
+
"mask": [
|
1059 |
+
true,
|
1060 |
+
true,
|
1061 |
+
true,
|
1062 |
+
true,
|
1063 |
+
true,
|
1064 |
+
true,
|
1065 |
+
false
|
1066 |
+
]
|
1067 |
+
},
|
1068 |
+
"proprio": {
|
1069 |
+
"mean": [
|
1070 |
+
0.0,
|
1071 |
+
0.0,
|
1072 |
+
0.0,
|
1073 |
+
0.0,
|
1074 |
+
0.0,
|
1075 |
+
0.0,
|
1076 |
+
0.0
|
1077 |
+
],
|
1078 |
+
"std": [
|
1079 |
+
0.0,
|
1080 |
+
0.0,
|
1081 |
+
0.0,
|
1082 |
+
0.0,
|
1083 |
+
0.0,
|
1084 |
+
0.0,
|
1085 |
+
0.0
|
1086 |
+
],
|
1087 |
+
"max": [
|
1088 |
+
0.0,
|
1089 |
+
0.0,
|
1090 |
+
0.0,
|
1091 |
+
0.0,
|
1092 |
+
0.0,
|
1093 |
+
0.0,
|
1094 |
+
0.0
|
1095 |
+
],
|
1096 |
+
"min": [
|
1097 |
+
0.0,
|
1098 |
+
0.0,
|
1099 |
+
0.0,
|
1100 |
+
0.0,
|
1101 |
+
0.0,
|
1102 |
+
0.0,
|
1103 |
+
0.0
|
1104 |
+
],
|
1105 |
+
"q01": [
|
1106 |
+
0.0,
|
1107 |
+
0.0,
|
1108 |
+
0.0,
|
1109 |
+
0.0,
|
1110 |
+
0.0,
|
1111 |
+
0.0,
|
1112 |
+
0.0
|
1113 |
+
],
|
1114 |
+
"q99": [
|
1115 |
+
0.0,
|
1116 |
+
0.0,
|
1117 |
+
0.0,
|
1118 |
+
0.0,
|
1119 |
+
0.0,
|
1120 |
+
0.0,
|
1121 |
+
0.0
|
1122 |
+
]
|
1123 |
+
},
|
1124 |
+
"num_transitions": 97939,
|
1125 |
+
"num_trajectories": 1000
|
1126 |
+
},
|
1127 |
+
"toto/0.1.0": {
|
1128 |
+
"action": {
|
1129 |
+
"mean": [
|
1130 |
+
0.3854214549064636,
|
1131 |
+
0.007769507821649313,
|
1132 |
+
0.3632742166519165,
|
1133 |
+
-0.665202796459198,
|
1134 |
+
0.1890396624803543,
|
1135 |
+
0.0329875648021698,
|
1136 |
+
0.0
|
1137 |
+
],
|
1138 |
+
"std": [
|
1139 |
+
0.12211630493402481,
|
1140 |
+
0.19378569722175598,
|
1141 |
+
0.10178232192993164,
|
1142 |
+
0.5725256204605103,
|
1143 |
+
0.298846036195755,
|
1144 |
+
0.32599160075187683,
|
1145 |
+
0.0
|
1146 |
+
],
|
1147 |
+
"max": [
|
1148 |
+
0.6839867234230042,
|
1149 |
+
0.4454185664653778,
|
1150 |
+
0.7984078526496887,
|
1151 |
+
2.120781660079956,
|
1152 |
+
1.371164321899414,
|
1153 |
+
1.4118704795837402,
|
1154 |
+
0.0
|
1155 |
+
],
|
1156 |
+
"min": [
|
1157 |
+
0.09922284632921219,
|
1158 |
+
-0.5180193781852722,
|
1159 |
+
0.13791072368621826,
|
1160 |
+
-2.635117530822754,
|
1161 |
+
-1.0734480619430542,
|
1162 |
+
-1.9282547235488892,
|
1163 |
+
0.0
|
1164 |
+
],
|
1165 |
+
"q01": [
|
1166 |
+
0.1756722891330719,
|
1167 |
+
-0.3077590811252594,
|
1168 |
+
0.235383919775486,
|
1169 |
+
-2.0908505964279174,
|
1170 |
+
-0.6191593289375306,
|
1171 |
+
-0.7488683319091797,
|
1172 |
+
0.0
|
1173 |
+
],
|
1174 |
+
"q99": [
|
1175 |
+
0.6136963081359863,
|
1176 |
+
0.33704194784164443,
|
1177 |
+
0.6681221985816956,
|
1178 |
+
0.7422861719131538,
|
1179 |
+
0.7955395007133507,
|
1180 |
+
0.740464625358582,
|
1181 |
+
0.0
|
1182 |
+
],
|
1183 |
+
"mask": [
|
1184 |
+
true,
|
1185 |
+
true,
|
1186 |
+
true,
|
1187 |
+
true,
|
1188 |
+
true,
|
1189 |
+
true,
|
1190 |
+
false
|
1191 |
+
]
|
1192 |
+
},
|
1193 |
+
"proprio": {
|
1194 |
+
"mean": [
|
1195 |
+
0.0,
|
1196 |
+
0.0,
|
1197 |
+
0.0,
|
1198 |
+
0.0,
|
1199 |
+
0.0,
|
1200 |
+
0.0,
|
1201 |
+
0.0
|
1202 |
+
],
|
1203 |
+
"std": [
|
1204 |
+
0.0,
|
1205 |
+
0.0,
|
1206 |
+
0.0,
|
1207 |
+
0.0,
|
1208 |
+
0.0,
|
1209 |
+
0.0,
|
1210 |
+
0.0
|
1211 |
+
],
|
1212 |
+
"max": [
|
1213 |
+
0.0,
|
1214 |
+
0.0,
|
1215 |
+
0.0,
|
1216 |
+
0.0,
|
1217 |
+
0.0,
|
1218 |
+
0.0,
|
1219 |
+
0.0
|
1220 |
+
],
|
1221 |
+
"min": [
|
1222 |
+
0.0,
|
1223 |
+
0.0,
|
1224 |
+
0.0,
|
1225 |
+
0.0,
|
1226 |
+
0.0,
|
1227 |
+
0.0,
|
1228 |
+
0.0
|
1229 |
+
],
|
1230 |
+
"q01": [
|
1231 |
+
0.0,
|
1232 |
+
0.0,
|
1233 |
+
0.0,
|
1234 |
+
0.0,
|
1235 |
+
0.0,
|
1236 |
+
0.0,
|
1237 |
+
0.0
|
1238 |
+
],
|
1239 |
+
"q99": [
|
1240 |
+
0.0,
|
1241 |
+
0.0,
|
1242 |
+
0.0,
|
1243 |
+
0.0,
|
1244 |
+
0.0,
|
1245 |
+
0.0,
|
1246 |
+
0.0
|
1247 |
+
]
|
1248 |
+
},
|
1249 |
+
"num_transitions": 325699,
|
1250 |
+
"num_trajectories": 1003
|
1251 |
+
},
|
1252 |
+
"language_table/0.1.0": {
|
1253 |
+
"action": {
|
1254 |
+
"mean": [
|
1255 |
+
0.00014891766477376223,
|
1256 |
+
-0.0005636657006107271,
|
1257 |
+
0.0,
|
1258 |
+
0.0,
|
1259 |
+
0.0,
|
1260 |
+
0.0,
|
1261 |
+
1.0
|
1262 |
+
],
|
1263 |
+
"std": [
|
1264 |
+
0.030162859708070755,
|
1265 |
+
0.04230763390660286,
|
1266 |
+
0.0,
|
1267 |
+
0.0,
|
1268 |
+
0.0,
|
1269 |
+
0.0,
|
1270 |
+
0.0
|
1271 |
+
],
|
1272 |
+
"max": [
|
1273 |
+
0.23357294499874115,
|
1274 |
+
0.24496802687644958,
|
1275 |
+
0.0,
|
1276 |
+
0.0,
|
1277 |
+
0.0,
|
1278 |
+
0.0,
|
1279 |
+
1.0
|
1280 |
+
],
|
1281 |
+
"min": [
|
1282 |
+
-0.21989956498146057,
|
1283 |
+
-0.23736150562763214,
|
1284 |
+
0.0,
|
1285 |
+
0.0,
|
1286 |
+
0.0,
|
1287 |
+
0.0,
|
1288 |
+
1.0
|
1289 |
+
],
|
1290 |
+
"q01": [
|
1291 |
+
-0.08179590478539467,
|
1292 |
+
-0.11795833334326744,
|
1293 |
+
0.0,
|
1294 |
+
0.0,
|
1295 |
+
0.0,
|
1296 |
+
0.0,
|
1297 |
+
1.0
|
1298 |
+
],
|
1299 |
+
"q99": [
|
1300 |
+
0.08822273463010788,
|
1301 |
+
0.1191693339496851,
|
1302 |
+
0.0,
|
1303 |
+
0.0,
|
1304 |
+
0.0,
|
1305 |
+
0.0,
|
1306 |
+
1.0
|
1307 |
+
],
|
1308 |
+
"mask": [
|
1309 |
+
true,
|
1310 |
+
true,
|
1311 |
+
true,
|
1312 |
+
true,
|
1313 |
+
true,
|
1314 |
+
true,
|
1315 |
+
false
|
1316 |
+
]
|
1317 |
+
},
|
1318 |
+
"proprio": {
|
1319 |
+
"mean": [
|
1320 |
+
0.0,
|
1321 |
+
0.0,
|
1322 |
+
0.0,
|
1323 |
+
0.0,
|
1324 |
+
0.0,
|
1325 |
+
0.0,
|
1326 |
+
0.0
|
1327 |
+
],
|
1328 |
+
"std": [
|
1329 |
+
0.0,
|
1330 |
+
0.0,
|
1331 |
+
0.0,
|
1332 |
+
0.0,
|
1333 |
+
0.0,
|
1334 |
+
0.0,
|
1335 |
+
0.0
|
1336 |
+
],
|
1337 |
+
"max": [
|
1338 |
+
0.0,
|
1339 |
+
0.0,
|
1340 |
+
0.0,
|
1341 |
+
0.0,
|
1342 |
+
0.0,
|
1343 |
+
0.0,
|
1344 |
+
0.0
|
1345 |
+
],
|
1346 |
+
"min": [
|
1347 |
+
0.0,
|
1348 |
+
0.0,
|
1349 |
+
0.0,
|
1350 |
+
0.0,
|
1351 |
+
0.0,
|
1352 |
+
0.0,
|
1353 |
+
0.0
|
1354 |
+
],
|
1355 |
+
"q01": [
|
1356 |
+
0.0,
|
1357 |
+
0.0,
|
1358 |
+
0.0,
|
1359 |
+
0.0,
|
1360 |
+
0.0,
|
1361 |
+
0.0,
|
1362 |
+
0.0
|
1363 |
+
],
|
1364 |
+
"q99": [
|
1365 |
+
0.0,
|
1366 |
+
0.0,
|
1367 |
+
0.0,
|
1368 |
+
0.0,
|
1369 |
+
0.0,
|
1370 |
+
0.0,
|
1371 |
+
0.0
|
1372 |
+
]
|
1373 |
+
},
|
1374 |
+
"num_transitions": 7045476,
|
1375 |
+
"num_trajectories": 442226
|
1376 |
+
},
|
1377 |
+
"stanford_hydra_dataset_converted_externally_to_rlds/0.1.0": {
|
1378 |
+
"action": {
|
1379 |
+
"mean": [
|
1380 |
+
0.0007790043600834906,
|
1381 |
+
0.00013707877951674163,
|
1382 |
+
-0.000254859565757215,
|
1383 |
+
0.0012903243768960238,
|
1384 |
+
-0.004751724191009998,
|
1385 |
+
0.002692892448976636,
|
1386 |
+
0.48855218291282654
|
1387 |
+
],
|
1388 |
+
"std": [
|
1389 |
+
0.008022183552384377,
|
1390 |
+
0.009131456725299358,
|
1391 |
+
0.00957438349723816,
|
1392 |
+
0.04122224077582359,
|
1393 |
+
0.03843001648783684,
|
1394 |
+
0.046067025512456894,
|
1395 |
+
0.49978113174438477
|
1396 |
+
],
|
1397 |
+
"max": [
|
1398 |
+
0.02499854564666748,
|
1399 |
+
0.02499903365969658,
|
1400 |
+
0.024999922141432762,
|
1401 |
+
0.24974457919597626,
|
1402 |
+
0.24997030198574066,
|
1403 |
+
0.24999946355819702,
|
1404 |
+
1.0
|
1405 |
+
],
|
1406 |
+
"min": [
|
1407 |
+
-0.024999044835567474,
|
1408 |
+
-0.024999700486660004,
|
1409 |
+
-0.02499929815530777,
|
1410 |
+
-0.24993225932121277,
|
1411 |
+
-0.2499666064977646,
|
1412 |
+
-0.2499932497739792,
|
1413 |
+
0.0
|
1414 |
+
],
|
1415 |
+
"q01": [
|
1416 |
+
-0.019992006458342076,
|
1417 |
+
-0.02415412735193968,
|
1418 |
+
-0.022941758055239916,
|
1419 |
+
-0.11085530579090118,
|
1420 |
+
-0.12024572037160397,
|
1421 |
+
-0.13314770206809043,
|
1422 |
+
0.0
|
1423 |
+
],
|
1424 |
+
"q99": [
|
1425 |
+
0.022886231057345868,
|
1426 |
+
0.022358838934451335,
|
1427 |
+
0.02410089675337076,
|
1428 |
+
0.12370114490389822,
|
1429 |
+
0.11323311634361738,
|
1430 |
+
0.18474749639630164,
|
1431 |
+
1.0
|
1432 |
+
],
|
1433 |
+
"mask": [
|
1434 |
+
true,
|
1435 |
+
true,
|
1436 |
+
true,
|
1437 |
+
true,
|
1438 |
+
true,
|
1439 |
+
true,
|
1440 |
+
false
|
1441 |
+
]
|
1442 |
+
},
|
1443 |
+
"proprio": {
|
1444 |
+
"mean": [
|
1445 |
+
0.0,
|
1446 |
+
0.0,
|
1447 |
+
0.0,
|
1448 |
+
0.0,
|
1449 |
+
0.0,
|
1450 |
+
0.0,
|
1451 |
+
0.0
|
1452 |
+
],
|
1453 |
+
"std": [
|
1454 |
+
0.0,
|
1455 |
+
0.0,
|
1456 |
+
0.0,
|
1457 |
+
0.0,
|
1458 |
+
0.0,
|
1459 |
+
0.0,
|
1460 |
+
0.0
|
1461 |
+
],
|
1462 |
+
"max": [
|
1463 |
+
0.0,
|
1464 |
+
0.0,
|
1465 |
+
0.0,
|
1466 |
+
0.0,
|
1467 |
+
0.0,
|
1468 |
+
0.0,
|
1469 |
+
0.0
|
1470 |
+
],
|
1471 |
+
"min": [
|
1472 |
+
0.0,
|
1473 |
+
0.0,
|
1474 |
+
0.0,
|
1475 |
+
0.0,
|
1476 |
+
0.0,
|
1477 |
+
0.0,
|
1478 |
+
0.0
|
1479 |
+
],
|
1480 |
+
"q01": [
|
1481 |
+
0.0,
|
1482 |
+
0.0,
|
1483 |
+
0.0,
|
1484 |
+
0.0,
|
1485 |
+
0.0,
|
1486 |
+
0.0,
|
1487 |
+
0.0
|
1488 |
+
],
|
1489 |
+
"q99": [
|
1490 |
+
0.0,
|
1491 |
+
0.0,
|
1492 |
+
0.0,
|
1493 |
+
0.0,
|
1494 |
+
0.0,
|
1495 |
+
0.0,
|
1496 |
+
0.0
|
1497 |
+
]
|
1498 |
+
},
|
1499 |
+
"num_transitions": 358234,
|
1500 |
+
"num_trajectories": 570
|
1501 |
+
},
|
1502 |
+
"austin_buds_dataset_converted_externally_to_rlds/0.1.0": {
|
1503 |
+
"action": {
|
1504 |
+
"mean": [
|
1505 |
+
-0.07678329944610596,
|
1506 |
+
0.0036849123425781727,
|
1507 |
+
0.05644941329956055,
|
1508 |
+
0.0,
|
1509 |
+
0.0,
|
1510 |
+
0.0,
|
1511 |
+
0.3510494828224182
|
1512 |
+
],
|
1513 |
+
"std": [
|
1514 |
+
0.6367746591567993,
|
1515 |
+
0.3788914680480957,
|
1516 |
+
0.47796377539634705,
|
1517 |
+
0.0,
|
1518 |
+
0.0,
|
1519 |
+
0.0,
|
1520 |
+
0.4772108495235443
|
1521 |
+
],
|
1522 |
+
"max": [
|
1523 |
+
1.0,
|
1524 |
+
1.0,
|
1525 |
+
1.0,
|
1526 |
+
0.0,
|
1527 |
+
0.0,
|
1528 |
+
0.0,
|
1529 |
+
1.0
|
1530 |
+
],
|
1531 |
+
"min": [
|
1532 |
+
-1.0,
|
1533 |
+
-1.0,
|
1534 |
+
-1.0,
|
1535 |
+
0.0,
|
1536 |
+
0.0,
|
1537 |
+
0.0,
|
1538 |
+
0.0
|
1539 |
+
],
|
1540 |
+
"q01": [
|
1541 |
+
-1.0,
|
1542 |
+
-0.9599999785423279,
|
1543 |
+
-0.8714285492897034,
|
1544 |
+
0.0,
|
1545 |
+
0.0,
|
1546 |
+
0.0,
|
1547 |
+
0.0
|
1548 |
+
],
|
1549 |
+
"q99": [
|
1550 |
+
1.0,
|
1551 |
+
0.8600000143051147,
|
1552 |
+
1.0,
|
1553 |
+
0.0,
|
1554 |
+
0.0,
|
1555 |
+
0.0,
|
1556 |
+
1.0
|
1557 |
+
],
|
1558 |
+
"mask": [
|
1559 |
+
true,
|
1560 |
+
true,
|
1561 |
+
true,
|
1562 |
+
true,
|
1563 |
+
true,
|
1564 |
+
true,
|
1565 |
+
false
|
1566 |
+
]
|
1567 |
+
},
|
1568 |
+
"proprio": {
|
1569 |
+
"mean": [
|
1570 |
+
0.0,
|
1571 |
+
0.0,
|
1572 |
+
0.0,
|
1573 |
+
0.0,
|
1574 |
+
0.0,
|
1575 |
+
0.0,
|
1576 |
+
0.0
|
1577 |
+
],
|
1578 |
+
"std": [
|
1579 |
+
0.0,
|
1580 |
+
0.0,
|
1581 |
+
0.0,
|
1582 |
+
0.0,
|
1583 |
+
0.0,
|
1584 |
+
0.0,
|
1585 |
+
0.0
|
1586 |
+
],
|
1587 |
+
"max": [
|
1588 |
+
0.0,
|
1589 |
+
0.0,
|
1590 |
+
0.0,
|
1591 |
+
0.0,
|
1592 |
+
0.0,
|
1593 |
+
0.0,
|
1594 |
+
0.0
|
1595 |
+
],
|
1596 |
+
"min": [
|
1597 |
+
0.0,
|
1598 |
+
0.0,
|
1599 |
+
0.0,
|
1600 |
+
0.0,
|
1601 |
+
0.0,
|
1602 |
+
0.0,
|
1603 |
+
0.0
|
1604 |
+
],
|
1605 |
+
"q01": [
|
1606 |
+
0.0,
|
1607 |
+
0.0,
|
1608 |
+
0.0,
|
1609 |
+
0.0,
|
1610 |
+
0.0,
|
1611 |
+
0.0,
|
1612 |
+
0.0
|
1613 |
+
],
|
1614 |
+
"q99": [
|
1615 |
+
0.0,
|
1616 |
+
0.0,
|
1617 |
+
0.0,
|
1618 |
+
0.0,
|
1619 |
+
0.0,
|
1620 |
+
0.0,
|
1621 |
+
0.0
|
1622 |
+
]
|
1623 |
+
},
|
1624 |
+
"num_transitions": 34112,
|
1625 |
+
"num_trajectories": 50
|
1626 |
+
},
|
1627 |
+
"nyu_franka_play_dataset_converted_externally_to_rlds/0.1.0": {
|
1628 |
+
"action": {
|
1629 |
+
"mean": [
|
1630 |
+
0.0010219910182058811,
|
1631 |
+
-0.00012002632865915075,
|
1632 |
+
0.00032894135802052915,
|
1633 |
+
0.0015034276293590665,
|
1634 |
+
-0.002198528265580535,
|
1635 |
+
-0.0016632305923849344,
|
1636 |
+
0.7230083346366882
|
1637 |
+
],
|
1638 |
+
"std": [
|
1639 |
+
0.013274150900542736,
|
1640 |
+
0.013215919025242329,
|
1641 |
+
0.01282210648059845,
|
1642 |
+
0.27324533462524414,
|
1643 |
+
0.05702253058552742,
|
1644 |
+
0.03917279839515686,
|
1645 |
+
0.44753193855285645
|
1646 |
+
],
|
1647 |
+
"max": [
|
1648 |
+
0.06424188613891602,
|
1649 |
+
0.07027634978294373,
|
1650 |
+
0.06129661202430725,
|
1651 |
+
6.281067848205566,
|
1652 |
+
0.1967729926109314,
|
1653 |
+
0.26377415657043457,
|
1654 |
+
1.0
|
1655 |
+
],
|
1656 |
+
"min": [
|
1657 |
+
-0.05952230095863342,
|
1658 |
+
-0.07232445478439331,
|
1659 |
+
-0.06730806827545166,
|
1660 |
+
-6.278434753417969,
|
1661 |
+
-0.21479034423828125,
|
1662 |
+
-0.3627619743347168,
|
1663 |
+
0.0
|
1664 |
+
],
|
1665 |
+
"q01": [
|
1666 |
+
-0.03199600875377655,
|
1667 |
+
-0.032861671447753905,
|
1668 |
+
-0.03368805110454559,
|
1669 |
+
-0.12080862045288086,
|
1670 |
+
-0.12175218224525451,
|
1671 |
+
-0.11370223641395569,
|
1672 |
+
0.0
|
1673 |
+
],
|
1674 |
+
"q99": [
|
1675 |
+
0.03101520001888276,
|
1676 |
+
0.0373908892273903,
|
1677 |
+
0.03646374464035038,
|
1678 |
+
0.11764093399047852,
|
1679 |
+
0.1258920183777809,
|
1680 |
+
0.09366151213645942,
|
1681 |
+
1.0
|
1682 |
+
],
|
1683 |
+
"mask": [
|
1684 |
+
true,
|
1685 |
+
true,
|
1686 |
+
true,
|
1687 |
+
true,
|
1688 |
+
true,
|
1689 |
+
true,
|
1690 |
+
false
|
1691 |
+
]
|
1692 |
+
},
|
1693 |
+
"proprio": {
|
1694 |
+
"mean": [
|
1695 |
+
0.0,
|
1696 |
+
0.0,
|
1697 |
+
0.0,
|
1698 |
+
0.0,
|
1699 |
+
0.0,
|
1700 |
+
0.0,
|
1701 |
+
0.0
|
1702 |
+
],
|
1703 |
+
"std": [
|
1704 |
+
0.0,
|
1705 |
+
0.0,
|
1706 |
+
0.0,
|
1707 |
+
0.0,
|
1708 |
+
0.0,
|
1709 |
+
0.0,
|
1710 |
+
0.0
|
1711 |
+
],
|
1712 |
+
"max": [
|
1713 |
+
0.0,
|
1714 |
+
0.0,
|
1715 |
+
0.0,
|
1716 |
+
0.0,
|
1717 |
+
0.0,
|
1718 |
+
0.0,
|
1719 |
+
0.0
|
1720 |
+
],
|
1721 |
+
"min": [
|
1722 |
+
0.0,
|
1723 |
+
0.0,
|
1724 |
+
0.0,
|
1725 |
+
0.0,
|
1726 |
+
0.0,
|
1727 |
+
0.0,
|
1728 |
+
0.0
|
1729 |
+
],
|
1730 |
+
"q01": [
|
1731 |
+
0.0,
|
1732 |
+
0.0,
|
1733 |
+
0.0,
|
1734 |
+
0.0,
|
1735 |
+
0.0,
|
1736 |
+
0.0,
|
1737 |
+
0.0
|
1738 |
+
],
|
1739 |
+
"q99": [
|
1740 |
+
0.0,
|
1741 |
+
0.0,
|
1742 |
+
0.0,
|
1743 |
+
0.0,
|
1744 |
+
0.0,
|
1745 |
+
0.0,
|
1746 |
+
0.0
|
1747 |
+
]
|
1748 |
+
},
|
1749 |
+
"num_transitions": 44875,
|
1750 |
+
"num_trajectories": 456
|
1751 |
+
},
|
1752 |
+
"furniture_bench_dataset_converted_externally_to_rlds/0.1.0": {
|
1753 |
+
"action": {
|
1754 |
+
"mean": [
|
1755 |
+
0.0001461071806261316,
|
1756 |
+
0.0010830992832779884,
|
1757 |
+
0.0006224963581189513,
|
1758 |
+
-0.0033032014034688473,
|
1759 |
+
-0.002688060747459531,
|
1760 |
+
0.018242614343762398,
|
1761 |
+
0.48854944109916687
|
1762 |
+
],
|
1763 |
+
"std": [
|
1764 |
+
0.016107233241200447,
|
1765 |
+
0.014891570433974266,
|
1766 |
+
0.014014236629009247,
|
1767 |
+
0.05827433615922928,
|
1768 |
+
0.11417083442211151,
|
1769 |
+
0.33479660749435425,
|
1770 |
+
0.4999157190322876
|
1771 |
+
],
|
1772 |
+
"max": [
|
1773 |
+
0.10000000149011612,
|
1774 |
+
0.10000000149011612,
|
1775 |
+
0.10000000149011612,
|
1776 |
+
0.8651833534240723,
|
1777 |
+
1.0909736156463623,
|
1778 |
+
2.863185405731201,
|
1779 |
+
1.0
|
1780 |
+
],
|
1781 |
+
"min": [
|
1782 |
+
-0.10495579987764359,
|
1783 |
+
-0.10939455777406693,
|
1784 |
+
-0.10000000149011612,
|
1785 |
+
-0.971906840801239,
|
1786 |
+
-1.0475432872772217,
|
1787 |
+
-3.06000018119812,
|
1788 |
+
0.0
|
1789 |
+
],
|
1790 |
+
"q01": [
|
1791 |
+
-0.053988199681043625,
|
1792 |
+
-0.05049169331789017,
|
1793 |
+
-0.032499241530895236,
|
1794 |
+
-0.1953887003660202,
|
1795 |
+
-0.41674559473991396,
|
1796 |
+
-0.8886768388748169,
|
1797 |
+
0.0
|
1798 |
+
],
|
1799 |
+
"q99": [
|
1800 |
+
0.05414841488003723,
|
1801 |
+
0.04965164884924884,
|
1802 |
+
0.060055799782276154,
|
1803 |
+
0.18231668293476103,
|
1804 |
+
0.39867786407470646,
|
1805 |
+
0.8772023963928218,
|
1806 |
+
1.0
|
1807 |
+
],
|
1808 |
+
"mask": [
|
1809 |
+
true,
|
1810 |
+
true,
|
1811 |
+
true,
|
1812 |
+
true,
|
1813 |
+
true,
|
1814 |
+
true,
|
1815 |
+
false
|
1816 |
+
]
|
1817 |
+
},
|
1818 |
+
"proprio": {
|
1819 |
+
"mean": [
|
1820 |
+
0.0,
|
1821 |
+
0.0,
|
1822 |
+
0.0,
|
1823 |
+
0.0,
|
1824 |
+
0.0,
|
1825 |
+
0.0,
|
1826 |
+
0.0
|
1827 |
+
],
|
1828 |
+
"std": [
|
1829 |
+
0.0,
|
1830 |
+
0.0,
|
1831 |
+
0.0,
|
1832 |
+
0.0,
|
1833 |
+
0.0,
|
1834 |
+
0.0,
|
1835 |
+
0.0
|
1836 |
+
],
|
1837 |
+
"max": [
|
1838 |
+
0.0,
|
1839 |
+
0.0,
|
1840 |
+
0.0,
|
1841 |
+
0.0,
|
1842 |
+
0.0,
|
1843 |
+
0.0,
|
1844 |
+
0.0
|
1845 |
+
],
|
1846 |
+
"min": [
|
1847 |
+
0.0,
|
1848 |
+
0.0,
|
1849 |
+
0.0,
|
1850 |
+
0.0,
|
1851 |
+
0.0,
|
1852 |
+
0.0,
|
1853 |
+
0.0
|
1854 |
+
],
|
1855 |
+
"q01": [
|
1856 |
+
0.0,
|
1857 |
+
0.0,
|
1858 |
+
0.0,
|
1859 |
+
0.0,
|
1860 |
+
0.0,
|
1861 |
+
0.0,
|
1862 |
+
0.0
|
1863 |
+
],
|
1864 |
+
"q99": [
|
1865 |
+
0.0,
|
1866 |
+
0.0,
|
1867 |
+
0.0,
|
1868 |
+
0.0,
|
1869 |
+
0.0,
|
1870 |
+
0.0,
|
1871 |
+
0.0
|
1872 |
+
]
|
1873 |
+
},
|
1874 |
+
"num_transitions": 3948057,
|
1875 |
+
"num_trajectories": 5100
|
1876 |
+
},
|
1877 |
+
"ucsd_kitchen_dataset_converted_externally_to_rlds/0.1.0": {
|
1878 |
+
"action": {
|
1879 |
+
"mean": [
|
1880 |
+
410.375732421875,
|
1881 |
+
116.9518814086914,
|
1882 |
+
192.35031127929688,
|
1883 |
+
-121.22441864013672,
|
1884 |
+
-33.84892654418945,
|
1885 |
+
50.016136169433594,
|
1886 |
+
0.741813600063324
|
1887 |
+
],
|
1888 |
+
"std": [
|
1889 |
+
122.81488037109375,
|
1890 |
+
108.80094909667969,
|
1891 |
+
130.30345153808594,
|
1892 |
+
116.2820053100586,
|
1893 |
+
27.62191390991211,
|
1894 |
+
41.02091979980469,
|
1895 |
+
0.4376337230205536
|
1896 |
+
],
|
1897 |
+
"max": [
|
1898 |
+
678.0,
|
1899 |
+
400.0,
|
1900 |
+
507.0,
|
1901 |
+
180.00001525878906,
|
1902 |
+
6.000013828277588,
|
1903 |
+
116.99998474121094,
|
1904 |
+
1.0
|
1905 |
+
],
|
1906 |
+
"min": [
|
1907 |
+
172.0,
|
1908 |
+
-166.0,
|
1909 |
+
-99.99999237060547,
|
1910 |
+
-180.00001525878906,
|
1911 |
+
-89.0,
|
1912 |
+
-96.00010681152344,
|
1913 |
+
0.0
|
1914 |
+
],
|
1915 |
+
"q01": [
|
1916 |
+
200.00001052856445,
|
1917 |
+
-102.31004211425781,
|
1918 |
+
-94.99993370056153,
|
1919 |
+
-180.00001525878906,
|
1920 |
+
-88.00001525878906,
|
1921 |
+
-38.999977111816406,
|
1922 |
+
0.0
|
1923 |
+
],
|
1924 |
+
"q99": [
|
1925 |
+
637.0,
|
1926 |
+
368.30999999999995,
|
1927 |
+
493.0,
|
1928 |
+
180.00001525878906,
|
1929 |
+
0.999983012676239,
|
1930 |
+
105.00001525878906,
|
1931 |
+
1.0
|
1932 |
+
],
|
1933 |
+
"mask": [
|
1934 |
+
true,
|
1935 |
+
true,
|
1936 |
+
true,
|
1937 |
+
true,
|
1938 |
+
true,
|
1939 |
+
true,
|
1940 |
+
false
|
1941 |
+
]
|
1942 |
+
},
|
1943 |
+
"proprio": {
|
1944 |
+
"mean": [
|
1945 |
+
0.0,
|
1946 |
+
0.0,
|
1947 |
+
0.0,
|
1948 |
+
0.0,
|
1949 |
+
0.0,
|
1950 |
+
0.0,
|
1951 |
+
0.0
|
1952 |
+
],
|
1953 |
+
"std": [
|
1954 |
+
0.0,
|
1955 |
+
0.0,
|
1956 |
+
0.0,
|
1957 |
+
0.0,
|
1958 |
+
0.0,
|
1959 |
+
0.0,
|
1960 |
+
0.0
|
1961 |
+
],
|
1962 |
+
"max": [
|
1963 |
+
0.0,
|
1964 |
+
0.0,
|
1965 |
+
0.0,
|
1966 |
+
0.0,
|
1967 |
+
0.0,
|
1968 |
+
0.0,
|
1969 |
+
0.0
|
1970 |
+
],
|
1971 |
+
"min": [
|
1972 |
+
0.0,
|
1973 |
+
0.0,
|
1974 |
+
0.0,
|
1975 |
+
0.0,
|
1976 |
+
0.0,
|
1977 |
+
0.0,
|
1978 |
+
0.0
|
1979 |
+
],
|
1980 |
+
"q01": [
|
1981 |
+
0.0,
|
1982 |
+
0.0,
|
1983 |
+
0.0,
|
1984 |
+
0.0,
|
1985 |
+
0.0,
|
1986 |
+
0.0,
|
1987 |
+
0.0
|
1988 |
+
],
|
1989 |
+
"q99": [
|
1990 |
+
0.0,
|
1991 |
+
0.0,
|
1992 |
+
0.0,
|
1993 |
+
0.0,
|
1994 |
+
0.0,
|
1995 |
+
0.0,
|
1996 |
+
0.0
|
1997 |
+
]
|
1998 |
+
},
|
1999 |
+
"num_transitions": 3970,
|
2000 |
+
"num_trajectories": 150
|
2001 |
+
},
|
2002 |
+
"austin_sailor_dataset_converted_externally_to_rlds/0.1.0": {
|
2003 |
+
"action": {
|
2004 |
+
"mean": [
|
2005 |
+
0.011825386434793472,
|
2006 |
+
0.0064610871486365795,
|
2007 |
+
0.060236409306526184,
|
2008 |
+
0.0,
|
2009 |
+
0.0,
|
2010 |
+
0.0016465834341943264,
|
2011 |
+
0.5260950326919556
|
2012 |
+
],
|
2013 |
+
"std": [
|
2014 |
+
0.46348854899406433,
|
2015 |
+
0.41240164637565613,
|
2016 |
+
0.41186293959617615,
|
2017 |
+
0.0,
|
2018 |
+
0.0,
|
2019 |
+
0.0578608438372612,
|
2020 |
+
0.49893733859062195
|
2021 |
+
],
|
2022 |
+
"max": [
|
2023 |
+
1.0,
|
2024 |
+
1.0,
|
2025 |
+
1.0,
|
2026 |
+
0.0,
|
2027 |
+
0.0,
|
2028 |
+
0.375,
|
2029 |
+
1.0
|
2030 |
+
],
|
2031 |
+
"min": [
|
2032 |
+
-1.0,
|
2033 |
+
-1.0,
|
2034 |
+
-1.0,
|
2035 |
+
0.0,
|
2036 |
+
0.0,
|
2037 |
+
-0.375,
|
2038 |
+
0.0
|
2039 |
+
],
|
2040 |
+
"q01": [
|
2041 |
+
-1.0,
|
2042 |
+
-0.9828571677207947,
|
2043 |
+
-0.6000000238418579,
|
2044 |
+
0.0,
|
2045 |
+
0.0,
|
2046 |
+
-0.17249999940395355,
|
2047 |
+
0.0
|
2048 |
+
],
|
2049 |
+
"q99": [
|
2050 |
+
1.0,
|
2051 |
+
0.9457142949104309,
|
2052 |
+
1.0,
|
2053 |
+
0.0,
|
2054 |
+
0.0,
|
2055 |
+
0.17892856895923615,
|
2056 |
+
1.0
|
2057 |
+
],
|
2058 |
+
"mask": [
|
2059 |
+
true,
|
2060 |
+
true,
|
2061 |
+
true,
|
2062 |
+
true,
|
2063 |
+
true,
|
2064 |
+
true,
|
2065 |
+
false
|
2066 |
+
]
|
2067 |
+
},
|
2068 |
+
"proprio": {
|
2069 |
+
"mean": [
|
2070 |
+
0.0,
|
2071 |
+
0.0,
|
2072 |
+
0.0,
|
2073 |
+
0.0,
|
2074 |
+
0.0,
|
2075 |
+
0.0,
|
2076 |
+
0.0
|
2077 |
+
],
|
2078 |
+
"std": [
|
2079 |
+
0.0,
|
2080 |
+
0.0,
|
2081 |
+
0.0,
|
2082 |
+
0.0,
|
2083 |
+
0.0,
|
2084 |
+
0.0,
|
2085 |
+
0.0
|
2086 |
+
],
|
2087 |
+
"max": [
|
2088 |
+
0.0,
|
2089 |
+
0.0,
|
2090 |
+
0.0,
|
2091 |
+
0.0,
|
2092 |
+
0.0,
|
2093 |
+
0.0,
|
2094 |
+
0.0
|
2095 |
+
],
|
2096 |
+
"min": [
|
2097 |
+
0.0,
|
2098 |
+
0.0,
|
2099 |
+
0.0,
|
2100 |
+
0.0,
|
2101 |
+
0.0,
|
2102 |
+
0.0,
|
2103 |
+
0.0
|
2104 |
+
],
|
2105 |
+
"q01": [
|
2106 |
+
0.0,
|
2107 |
+
0.0,
|
2108 |
+
0.0,
|
2109 |
+
0.0,
|
2110 |
+
0.0,
|
2111 |
+
0.0,
|
2112 |
+
0.0
|
2113 |
+
],
|
2114 |
+
"q99": [
|
2115 |
+
0.0,
|
2116 |
+
0.0,
|
2117 |
+
0.0,
|
2118 |
+
0.0,
|
2119 |
+
0.0,
|
2120 |
+
0.0,
|
2121 |
+
0.0
|
2122 |
+
]
|
2123 |
+
},
|
2124 |
+
"num_transitions": 353094,
|
2125 |
+
"num_trajectories": 240
|
2126 |
+
},
|
2127 |
+
"austin_sirius_dataset_converted_externally_to_rlds/0.1.0": {
|
2128 |
+
"action": {
|
2129 |
+
"mean": [
|
2130 |
+
0.077476866543293,
|
2131 |
+
0.031955525279045105,
|
2132 |
+
0.04244735836982727,
|
2133 |
+
0.0,
|
2134 |
+
0.0,
|
2135 |
+
-0.01603454165160656,
|
2136 |
+
0.43260180950164795
|
2137 |
+
],
|
2138 |
+
"std": [
|
2139 |
+
0.3906330168247223,
|
2140 |
+
0.2998153865337372,
|
2141 |
+
0.2782270312309265,
|
2142 |
+
0.0,
|
2143 |
+
0.0,
|
2144 |
+
0.08120641857385635,
|
2145 |
+
0.49528202414512634
|
2146 |
+
],
|
2147 |
+
"max": [
|
2148 |
+
1.0002285242080688,
|
2149 |
+
0.960608720779419,
|
2150 |
+
1.105179786682129,
|
2151 |
+
0.0,
|
2152 |
+
0.0,
|
2153 |
+
0.341785728931427,
|
2154 |
+
1.0
|
2155 |
+
],
|
2156 |
+
"min": [
|
2157 |
+
-1.0183025598526,
|
2158 |
+
-0.9800000190734863,
|
2159 |
+
-0.9774575233459473,
|
2160 |
+
0.0,
|
2161 |
+
0.0,
|
2162 |
+
-0.34607142210006714,
|
2163 |
+
0.0
|
2164 |
+
],
|
2165 |
+
"q01": [
|
2166 |
+
-0.780905865430832,
|
2167 |
+
-0.5667179036140442,
|
2168 |
+
-0.5254343223571777,
|
2169 |
+
0.0,
|
2170 |
+
0.0,
|
2171 |
+
-0.28495091378688814,
|
2172 |
+
0.0
|
2173 |
+
],
|
2174 |
+
"q99": [
|
2175 |
+
0.9569637751579284,
|
2176 |
+
0.6971374487876891,
|
2177 |
+
0.8124888157844541,
|
2178 |
+
0.0,
|
2179 |
+
0.0,
|
2180 |
+
0.1971428543329239,
|
2181 |
+
1.0
|
2182 |
+
],
|
2183 |
+
"mask": [
|
2184 |
+
true,
|
2185 |
+
true,
|
2186 |
+
true,
|
2187 |
+
true,
|
2188 |
+
true,
|
2189 |
+
true,
|
2190 |
+
false
|
2191 |
+
]
|
2192 |
+
},
|
2193 |
+
"proprio": {
|
2194 |
+
"mean": [
|
2195 |
+
0.0,
|
2196 |
+
0.0,
|
2197 |
+
0.0,
|
2198 |
+
0.0,
|
2199 |
+
0.0,
|
2200 |
+
0.0,
|
2201 |
+
0.0
|
2202 |
+
],
|
2203 |
+
"std": [
|
2204 |
+
0.0,
|
2205 |
+
0.0,
|
2206 |
+
0.0,
|
2207 |
+
0.0,
|
2208 |
+
0.0,
|
2209 |
+
0.0,
|
2210 |
+
0.0
|
2211 |
+
],
|
2212 |
+
"max": [
|
2213 |
+
0.0,
|
2214 |
+
0.0,
|
2215 |
+
0.0,
|
2216 |
+
0.0,
|
2217 |
+
0.0,
|
2218 |
+
0.0,
|
2219 |
+
0.0
|
2220 |
+
],
|
2221 |
+
"min": [
|
2222 |
+
0.0,
|
2223 |
+
0.0,
|
2224 |
+
0.0,
|
2225 |
+
0.0,
|
2226 |
+
0.0,
|
2227 |
+
0.0,
|
2228 |
+
0.0
|
2229 |
+
],
|
2230 |
+
"q01": [
|
2231 |
+
0.0,
|
2232 |
+
0.0,
|
2233 |
+
0.0,
|
2234 |
+
0.0,
|
2235 |
+
0.0,
|
2236 |
+
0.0,
|
2237 |
+
0.0
|
2238 |
+
],
|
2239 |
+
"q99": [
|
2240 |
+
0.0,
|
2241 |
+
0.0,
|
2242 |
+
0.0,
|
2243 |
+
0.0,
|
2244 |
+
0.0,
|
2245 |
+
0.0,
|
2246 |
+
0.0
|
2247 |
+
]
|
2248 |
+
},
|
2249 |
+
"num_transitions": 279939,
|
2250 |
+
"num_trajectories": 559
|
2251 |
+
},
|
2252 |
+
"dlr_edan_shared_control_converted_externally_to_rlds/0.1.0": {
|
2253 |
+
"action": {
|
2254 |
+
"mean": [
|
2255 |
+
0.0066478196531534195,
|
2256 |
+
-0.0007657355745323002,
|
2257 |
+
0.006522845011204481,
|
2258 |
+
0.0011679773451760411,
|
2259 |
+
-0.006395624950528145,
|
2260 |
+
-0.011903021484613419,
|
2261 |
+
0.6985887289047241
|
2262 |
+
],
|
2263 |
+
"std": [
|
2264 |
+
0.021393585950136185,
|
2265 |
+
0.018142299726605415,
|
2266 |
+
0.03374377265572548,
|
2267 |
+
0.01743541844189167,
|
2268 |
+
0.03394372761249542,
|
2269 |
+
0.04641878604888916,
|
2270 |
+
0.45885783433914185
|
2271 |
+
],
|
2272 |
+
"max": [
|
2273 |
+
0.18991442024707794,
|
2274 |
+
0.0739002525806427,
|
2275 |
+
0.18064819276332855,
|
2276 |
+
0.0866486132144928,
|
2277 |
+
0.13464981317520142,
|
2278 |
+
0.16910280287265778,
|
2279 |
+
1.0
|
2280 |
+
],
|
2281 |
+
"min": [
|
2282 |
+
-0.10054297000169754,
|
2283 |
+
-0.08427435159683228,
|
2284 |
+
-0.13533438742160797,
|
2285 |
+
-0.17556548118591309,
|
2286 |
+
-0.18485672771930695,
|
2287 |
+
-0.2680685818195343,
|
2288 |
+
0.0
|
2289 |
+
],
|
2290 |
+
"q01": [
|
2291 |
+
-0.02987122368067503,
|
2292 |
+
-0.06013262912631035,
|
2293 |
+
-0.08286409199237824,
|
2294 |
+
-0.05924444157630205,
|
2295 |
+
-0.15986866518855095,
|
2296 |
+
-0.15636983573436739,
|
2297 |
+
0.0
|
2298 |
+
],
|
2299 |
+
"q99": [
|
2300 |
+
0.08832092039287087,
|
2301 |
+
0.042126184627413736,
|
2302 |
+
0.11311905644834042,
|
2303 |
+
0.0643695573508739,
|
2304 |
+
0.03941855944693088,
|
2305 |
+
0.156646853685379,
|
2306 |
+
1.0
|
2307 |
+
],
|
2308 |
+
"mask": [
|
2309 |
+
true,
|
2310 |
+
true,
|
2311 |
+
true,
|
2312 |
+
true,
|
2313 |
+
true,
|
2314 |
+
true,
|
2315 |
+
false
|
2316 |
+
]
|
2317 |
+
},
|
2318 |
+
"proprio": {
|
2319 |
+
"mean": [
|
2320 |
+
0.0,
|
2321 |
+
0.0,
|
2322 |
+
0.0,
|
2323 |
+
0.0,
|
2324 |
+
0.0,
|
2325 |
+
0.0,
|
2326 |
+
0.0
|
2327 |
+
],
|
2328 |
+
"std": [
|
2329 |
+
0.0,
|
2330 |
+
0.0,
|
2331 |
+
0.0,
|
2332 |
+
0.0,
|
2333 |
+
0.0,
|
2334 |
+
0.0,
|
2335 |
+
0.0
|
2336 |
+
],
|
2337 |
+
"max": [
|
2338 |
+
0.0,
|
2339 |
+
0.0,
|
2340 |
+
0.0,
|
2341 |
+
0.0,
|
2342 |
+
0.0,
|
2343 |
+
0.0,
|
2344 |
+
0.0
|
2345 |
+
],
|
2346 |
+
"min": [
|
2347 |
+
0.0,
|
2348 |
+
0.0,
|
2349 |
+
0.0,
|
2350 |
+
0.0,
|
2351 |
+
0.0,
|
2352 |
+
0.0,
|
2353 |
+
0.0
|
2354 |
+
],
|
2355 |
+
"q01": [
|
2356 |
+
0.0,
|
2357 |
+
0.0,
|
2358 |
+
0.0,
|
2359 |
+
0.0,
|
2360 |
+
0.0,
|
2361 |
+
0.0,
|
2362 |
+
0.0
|
2363 |
+
],
|
2364 |
+
"q99": [
|
2365 |
+
0.0,
|
2366 |
+
0.0,
|
2367 |
+
0.0,
|
2368 |
+
0.0,
|
2369 |
+
0.0,
|
2370 |
+
0.0,
|
2371 |
+
0.0
|
2372 |
+
]
|
2373 |
+
},
|
2374 |
+
"num_transitions": 8928,
|
2375 |
+
"num_trajectories": 104
|
2376 |
+
},
|
2377 |
+
"iamlab_cmu_pickup_insert_converted_externally_to_rlds/0.1.0": {
|
2378 |
+
"action": {
|
2379 |
+
"mean": [
|
2380 |
+
0.5274373292922974,
|
2381 |
+
0.028582017868757248,
|
2382 |
+
0.18712472915649414,
|
2383 |
+
1.2339569330215454,
|
2384 |
+
0.03226622939109802,
|
2385 |
+
-1.4199472665786743,
|
2386 |
+
0.5550631880760193
|
2387 |
+
],
|
2388 |
+
"std": [
|
2389 |
+
0.08108346909284592,
|
2390 |
+
0.1116756722331047,
|
2391 |
+
0.07747555524110794,
|
2392 |
+
2.8737244606018066,
|
2393 |
+
0.02774704433977604,
|
2394 |
+
2.7678685188293457,
|
2395 |
+
0.4969509243965149
|
2396 |
+
],
|
2397 |
+
"max": [
|
2398 |
+
0.6634981632232666,
|
2399 |
+
0.23428471386432648,
|
2400 |
+
0.4308285415172577,
|
2401 |
+
3.1415927410125732,
|
2402 |
+
0.13647015392780304,
|
2403 |
+
3.141592502593994,
|
2404 |
+
1.0
|
2405 |
+
],
|
2406 |
+
"min": [
|
2407 |
+
0.3071657121181488,
|
2408 |
+
-0.29754969477653503,
|
2409 |
+
0.06578229367733002,
|
2410 |
+
-3.1415927410125732,
|
2411 |
+
-0.04584203287959099,
|
2412 |
+
-3.141592502593994,
|
2413 |
+
0.0
|
2414 |
+
],
|
2415 |
+
"q01": [
|
2416 |
+
0.3148897051811218,
|
2417 |
+
-0.20317550599575043,
|
2418 |
+
0.06785467118024827,
|
2419 |
+
-3.140952730178833,
|
2420 |
+
-0.029743434861302376,
|
2421 |
+
-3.141091251373291,
|
2422 |
+
0.0
|
2423 |
+
],
|
2424 |
+
"q99": [
|
2425 |
+
0.6472805738449097,
|
2426 |
+
0.20846802592277527,
|
2427 |
+
0.36855655312538155,
|
2428 |
+
3.1409926891326903,
|
2429 |
+
0.11424950212240226,
|
2430 |
+
3.1410969257354737,
|
2431 |
+
1.0
|
2432 |
+
],
|
2433 |
+
"mask": [
|
2434 |
+
true,
|
2435 |
+
true,
|
2436 |
+
true,
|
2437 |
+
true,
|
2438 |
+
true,
|
2439 |
+
true,
|
2440 |
+
false
|
2441 |
+
]
|
2442 |
+
},
|
2443 |
+
"proprio": {
|
2444 |
+
"mean": [
|
2445 |
+
0.0,
|
2446 |
+
0.0,
|
2447 |
+
0.0,
|
2448 |
+
0.0,
|
2449 |
+
0.0,
|
2450 |
+
0.0,
|
2451 |
+
0.0
|
2452 |
+
],
|
2453 |
+
"std": [
|
2454 |
+
0.0,
|
2455 |
+
0.0,
|
2456 |
+
0.0,
|
2457 |
+
0.0,
|
2458 |
+
0.0,
|
2459 |
+
0.0,
|
2460 |
+
0.0
|
2461 |
+
],
|
2462 |
+
"max": [
|
2463 |
+
0.0,
|
2464 |
+
0.0,
|
2465 |
+
0.0,
|
2466 |
+
0.0,
|
2467 |
+
0.0,
|
2468 |
+
0.0,
|
2469 |
+
0.0
|
2470 |
+
],
|
2471 |
+
"min": [
|
2472 |
+
0.0,
|
2473 |
+
0.0,
|
2474 |
+
0.0,
|
2475 |
+
0.0,
|
2476 |
+
0.0,
|
2477 |
+
0.0,
|
2478 |
+
0.0
|
2479 |
+
],
|
2480 |
+
"q01": [
|
2481 |
+
0.0,
|
2482 |
+
0.0,
|
2483 |
+
0.0,
|
2484 |
+
0.0,
|
2485 |
+
0.0,
|
2486 |
+
0.0,
|
2487 |
+
0.0
|
2488 |
+
],
|
2489 |
+
"q99": [
|
2490 |
+
0.0,
|
2491 |
+
0.0,
|
2492 |
+
0.0,
|
2493 |
+
0.0,
|
2494 |
+
0.0,
|
2495 |
+
0.0,
|
2496 |
+
0.0
|
2497 |
+
]
|
2498 |
+
},
|
2499 |
+
"num_transitions": 146241,
|
2500 |
+
"num_trajectories": 631
|
2501 |
+
},
|
2502 |
+
"utaustin_mutex/0.1.0": {
|
2503 |
+
"action": {
|
2504 |
+
"mean": [
|
2505 |
+
0.06176406517624855,
|
2506 |
+
-0.005005490034818649,
|
2507 |
+
0.10216782987117767,
|
2508 |
+
-0.03314131125807762,
|
2509 |
+
0.013895022682845592,
|
2510 |
+
-0.011317633092403412,
|
2511 |
+
0.5038976669311523
|
2512 |
+
],
|
2513 |
+
"std": [
|
2514 |
+
0.187501460313797,
|
2515 |
+
0.4468473196029663,
|
2516 |
+
0.3792876601219177,
|
2517 |
+
0.14097853004932404,
|
2518 |
+
0.06453699618577957,
|
2519 |
+
0.11765265464782715,
|
2520 |
+
0.501045286655426
|
2521 |
+
],
|
2522 |
+
"max": [
|
2523 |
+
1.0,
|
2524 |
+
1.0,
|
2525 |
+
1.0,
|
2526 |
+
0.375,
|
2527 |
+
0.375,
|
2528 |
+
0.375,
|
2529 |
+
1.0
|
2530 |
+
],
|
2531 |
+
"min": [
|
2532 |
+
-1.0,
|
2533 |
+
-1.0,
|
2534 |
+
-1.0,
|
2535 |
+
-0.375,
|
2536 |
+
-0.375,
|
2537 |
+
-0.375,
|
2538 |
+
0.0
|
2539 |
+
],
|
2540 |
+
"q01": [
|
2541 |
+
-0.4285714328289032,
|
2542 |
+
-0.9800000190734863,
|
2543 |
+
-0.5571428537368774,
|
2544 |
+
-0.375,
|
2545 |
+
-0.15642857551574707,
|
2546 |
+
-0.335357129573822,
|
2547 |
+
0.0
|
2548 |
+
],
|
2549 |
+
"q99": [
|
2550 |
+
0.5914285778999329,
|
2551 |
+
0.9714285731315613,
|
2552 |
+
1.0,
|
2553 |
+
0.3278571367263794,
|
2554 |
+
0.207857146859169,
|
2555 |
+
0.25607141852378845,
|
2556 |
+
1.0
|
2557 |
+
],
|
2558 |
+
"mask": [
|
2559 |
+
true,
|
2560 |
+
true,
|
2561 |
+
true,
|
2562 |
+
true,
|
2563 |
+
true,
|
2564 |
+
true,
|
2565 |
+
false
|
2566 |
+
]
|
2567 |
+
},
|
2568 |
+
"proprio": {
|
2569 |
+
"mean": [
|
2570 |
+
0.0,
|
2571 |
+
0.0,
|
2572 |
+
0.0,
|
2573 |
+
0.0,
|
2574 |
+
0.0,
|
2575 |
+
0.0,
|
2576 |
+
0.0
|
2577 |
+
],
|
2578 |
+
"std": [
|
2579 |
+
0.0,
|
2580 |
+
0.0,
|
2581 |
+
0.0,
|
2582 |
+
0.0,
|
2583 |
+
0.0,
|
2584 |
+
0.0,
|
2585 |
+
0.0
|
2586 |
+
],
|
2587 |
+
"max": [
|
2588 |
+
0.0,
|
2589 |
+
0.0,
|
2590 |
+
0.0,
|
2591 |
+
0.0,
|
2592 |
+
0.0,
|
2593 |
+
0.0,
|
2594 |
+
0.0
|
2595 |
+
],
|
2596 |
+
"min": [
|
2597 |
+
0.0,
|
2598 |
+
0.0,
|
2599 |
+
0.0,
|
2600 |
+
0.0,
|
2601 |
+
0.0,
|
2602 |
+
0.0,
|
2603 |
+
0.0
|
2604 |
+
],
|
2605 |
+
"q01": [
|
2606 |
+
0.0,
|
2607 |
+
0.0,
|
2608 |
+
0.0,
|
2609 |
+
0.0,
|
2610 |
+
0.0,
|
2611 |
+
0.0,
|
2612 |
+
0.0
|
2613 |
+
],
|
2614 |
+
"q99": [
|
2615 |
+
0.0,
|
2616 |
+
0.0,
|
2617 |
+
0.0,
|
2618 |
+
0.0,
|
2619 |
+
0.0,
|
2620 |
+
0.0,
|
2621 |
+
0.0
|
2622 |
+
]
|
2623 |
+
},
|
2624 |
+
"num_transitions": 361883,
|
2625 |
+
"num_trajectories": 1500
|
2626 |
+
},
|
2627 |
+
"berkeley_fanuc_manipulation/0.1.0": {
|
2628 |
+
"action": {
|
2629 |
+
"mean": [
|
2630 |
+
0.0007744057802483439,
|
2631 |
+
-0.00031240080716088414,
|
2632 |
+
-0.0015001941937953234,
|
2633 |
+
-0.0007515158504247665,
|
2634 |
+
-0.00015832878125365824,
|
2635 |
+
0.00014327642566058785,
|
2636 |
+
0.699295699596405
|
2637 |
+
],
|
2638 |
+
"std": [
|
2639 |
+
0.0034070133697241545,
|
2640 |
+
0.00499219074845314,
|
2641 |
+
0.005344326142221689,
|
2642 |
+
0.007599010597914457,
|
2643 |
+
0.004081932827830315,
|
2644 |
+
0.008568963967263699,
|
2645 |
+
0.45868709683418274
|
2646 |
+
],
|
2647 |
+
"max": [
|
2648 |
+
0.009999999776482582,
|
2649 |
+
0.009999999776482582,
|
2650 |
+
0.009999999776482582,
|
2651 |
+
0.03490658476948738,
|
2652 |
+
0.03490658476948738,
|
2653 |
+
0.03490658476948738,
|
2654 |
+
1.0
|
2655 |
+
],
|
2656 |
+
"min": [
|
2657 |
+
-0.009999999776482582,
|
2658 |
+
-0.009999999776482582,
|
2659 |
+
-0.009999999776482582,
|
2660 |
+
-0.03490658476948738,
|
2661 |
+
-0.03490658476948738,
|
2662 |
+
-0.03490658476948738,
|
2663 |
+
0.0
|
2664 |
+
],
|
2665 |
+
"q01": [
|
2666 |
+
-0.009999999776482582,
|
2667 |
+
-0.009999999776482582,
|
2668 |
+
-0.009999999776482582,
|
2669 |
+
-0.03490658476948738,
|
2670 |
+
0.0,
|
2671 |
+
-0.03490658476948738,
|
2672 |
+
0.0
|
2673 |
+
],
|
2674 |
+
"q99": [
|
2675 |
+
0.009999999776482582,
|
2676 |
+
0.009999999776482582,
|
2677 |
+
0.009999999776482582,
|
2678 |
+
0.03490658476948738,
|
2679 |
+
0.0,
|
2680 |
+
0.03490658476948738,
|
2681 |
+
1.0
|
2682 |
+
],
|
2683 |
+
"mask": [
|
2684 |
+
true,
|
2685 |
+
true,
|
2686 |
+
true,
|
2687 |
+
true,
|
2688 |
+
true,
|
2689 |
+
true,
|
2690 |
+
false
|
2691 |
+
]
|
2692 |
+
},
|
2693 |
+
"proprio": {
|
2694 |
+
"mean": [
|
2695 |
+
0.0,
|
2696 |
+
0.0,
|
2697 |
+
0.0,
|
2698 |
+
0.0,
|
2699 |
+
0.0,
|
2700 |
+
0.0,
|
2701 |
+
0.0
|
2702 |
+
],
|
2703 |
+
"std": [
|
2704 |
+
0.0,
|
2705 |
+
0.0,
|
2706 |
+
0.0,
|
2707 |
+
0.0,
|
2708 |
+
0.0,
|
2709 |
+
0.0,
|
2710 |
+
0.0
|
2711 |
+
],
|
2712 |
+
"max": [
|
2713 |
+
0.0,
|
2714 |
+
0.0,
|
2715 |
+
0.0,
|
2716 |
+
0.0,
|
2717 |
+
0.0,
|
2718 |
+
0.0,
|
2719 |
+
0.0
|
2720 |
+
],
|
2721 |
+
"min": [
|
2722 |
+
0.0,
|
2723 |
+
0.0,
|
2724 |
+
0.0,
|
2725 |
+
0.0,
|
2726 |
+
0.0,
|
2727 |
+
0.0,
|
2728 |
+
0.0
|
2729 |
+
],
|
2730 |
+
"q01": [
|
2731 |
+
0.0,
|
2732 |
+
0.0,
|
2733 |
+
0.0,
|
2734 |
+
0.0,
|
2735 |
+
0.0,
|
2736 |
+
0.0,
|
2737 |
+
0.0
|
2738 |
+
],
|
2739 |
+
"q99": [
|
2740 |
+
0.0,
|
2741 |
+
0.0,
|
2742 |
+
0.0,
|
2743 |
+
0.0,
|
2744 |
+
0.0,
|
2745 |
+
0.0,
|
2746 |
+
0.0
|
2747 |
+
]
|
2748 |
+
},
|
2749 |
+
"num_transitions": 62613,
|
2750 |
+
"num_trajectories": 415
|
2751 |
+
},
|
2752 |
+
"cmu_stretch/0.1.0": {
|
2753 |
+
"action": {
|
2754 |
+
"mean": [
|
2755 |
+
0.0003630445571616292,
|
2756 |
+
0.0,
|
2757 |
+
0.0016466928645968437,
|
2758 |
+
0.0,
|
2759 |
+
0.0,
|
2760 |
+
0.0,
|
2761 |
+
0.3987048268318176
|
2762 |
+
],
|
2763 |
+
"std": [
|
2764 |
+
0.004081855062395334,
|
2765 |
+
0.0,
|
2766 |
+
0.003774340031668544,
|
2767 |
+
0.0,
|
2768 |
+
0.0,
|
2769 |
+
0.0,
|
2770 |
+
0.489638090133667
|
2771 |
+
],
|
2772 |
+
"max": [
|
2773 |
+
0.02338407188653946,
|
2774 |
+
0.0,
|
2775 |
+
0.023404927924275398,
|
2776 |
+
0.0,
|
2777 |
+
0.0,
|
2778 |
+
0.0,
|
2779 |
+
1.0
|
2780 |
+
],
|
2781 |
+
"min": [
|
2782 |
+
-0.019353797659277916,
|
2783 |
+
0.0,
|
2784 |
+
-0.02019215188920498,
|
2785 |
+
0.0,
|
2786 |
+
0.0,
|
2787 |
+
0.0,
|
2788 |
+
0.0
|
2789 |
+
],
|
2790 |
+
"q01": [
|
2791 |
+
-0.011175686959177256,
|
2792 |
+
0.0,
|
2793 |
+
-0.0032206363626755773,
|
2794 |
+
0.0,
|
2795 |
+
0.0,
|
2796 |
+
0.0,
|
2797 |
+
0.0
|
2798 |
+
],
|
2799 |
+
"q99": [
|
2800 |
+
0.014501785952597848,
|
2801 |
+
0.0,
|
2802 |
+
0.015056106168776728,
|
2803 |
+
0.0,
|
2804 |
+
0.0,
|
2805 |
+
0.0,
|
2806 |
+
1.0
|
2807 |
+
],
|
2808 |
+
"mask": [
|
2809 |
+
true,
|
2810 |
+
true,
|
2811 |
+
true,
|
2812 |
+
true,
|
2813 |
+
true,
|
2814 |
+
true,
|
2815 |
+
false
|
2816 |
+
]
|
2817 |
+
},
|
2818 |
+
"proprio": {
|
2819 |
+
"mean": [
|
2820 |
+
0.0,
|
2821 |
+
0.0,
|
2822 |
+
0.0,
|
2823 |
+
0.0,
|
2824 |
+
0.0,
|
2825 |
+
0.0,
|
2826 |
+
0.0
|
2827 |
+
],
|
2828 |
+
"std": [
|
2829 |
+
0.0,
|
2830 |
+
0.0,
|
2831 |
+
0.0,
|
2832 |
+
0.0,
|
2833 |
+
0.0,
|
2834 |
+
0.0,
|
2835 |
+
0.0
|
2836 |
+
],
|
2837 |
+
"max": [
|
2838 |
+
0.0,
|
2839 |
+
0.0,
|
2840 |
+
0.0,
|
2841 |
+
0.0,
|
2842 |
+
0.0,
|
2843 |
+
0.0,
|
2844 |
+
0.0
|
2845 |
+
],
|
2846 |
+
"min": [
|
2847 |
+
0.0,
|
2848 |
+
0.0,
|
2849 |
+
0.0,
|
2850 |
+
0.0,
|
2851 |
+
0.0,
|
2852 |
+
0.0,
|
2853 |
+
0.0
|
2854 |
+
],
|
2855 |
+
"q01": [
|
2856 |
+
0.0,
|
2857 |
+
0.0,
|
2858 |
+
0.0,
|
2859 |
+
0.0,
|
2860 |
+
0.0,
|
2861 |
+
0.0,
|
2862 |
+
0.0
|
2863 |
+
],
|
2864 |
+
"q99": [
|
2865 |
+
0.0,
|
2866 |
+
0.0,
|
2867 |
+
0.0,
|
2868 |
+
0.0,
|
2869 |
+
0.0,
|
2870 |
+
0.0,
|
2871 |
+
0.0
|
2872 |
+
]
|
2873 |
+
},
|
2874 |
+
"num_transitions": 25016,
|
2875 |
+
"num_trajectories": 135
|
2876 |
+
},
|
2877 |
+
"bc_z/0.1.0": {
|
2878 |
+
"action": {
|
2879 |
+
"mean": [
|
2880 |
+
-0.009958645328879356,
|
2881 |
+
0.0008958434336818755,
|
2882 |
+
0.00499522453173995,
|
2883 |
+
0.000297540333122015,
|
2884 |
+
-0.008734511211514473,
|
2885 |
+
-0.03068969026207924,
|
2886 |
+
0.8344562649726868
|
2887 |
+
],
|
2888 |
+
"std": [
|
2889 |
+
0.030533093959093094,
|
2890 |
+
0.0231416504830122,
|
2891 |
+
0.020642085000872612,
|
2892 |
+
0.04156165570020676,
|
2893 |
+
0.04643021523952484,
|
2894 |
+
0.07697845250368118,
|
2895 |
+
0.36111101508140564
|
2896 |
+
],
|
2897 |
+
"max": [
|
2898 |
+
0.2165454924106598,
|
2899 |
+
0.1251407265663147,
|
2900 |
+
0.10772687941789627,
|
2901 |
+
0.33544227480888367,
|
2902 |
+
0.28117990493774414,
|
2903 |
+
0.40614867210388184,
|
2904 |
+
1.0
|
2905 |
+
],
|
2906 |
+
"min": [
|
2907 |
+
-0.1677047461271286,
|
2908 |
+
-0.14630407094955444,
|
2909 |
+
-0.10066790133714676,
|
2910 |
+
-0.29421567916870117,
|
2911 |
+
-0.32101404666900635,
|
2912 |
+
-0.4635624885559082,
|
2913 |
+
0.0
|
2914 |
+
],
|
2915 |
+
"q01": [
|
2916 |
+
-0.09220654994249344,
|
2917 |
+
-0.06456145539879798,
|
2918 |
+
-0.049121275544166565,
|
2919 |
+
-0.11594625547528267,
|
2920 |
+
-0.14152548640966414,
|
2921 |
+
-0.2251061636209488,
|
2922 |
+
0.0
|
2923 |
+
],
|
2924 |
+
"q99": [
|
2925 |
+
0.07628866866230968,
|
2926 |
+
0.058019736707210584,
|
2927 |
+
0.052540797740221024,
|
2928 |
+
0.11740604028105736,
|
2929 |
+
0.11703975558280955,
|
2930 |
+
0.16729306846857078,
|
2931 |
+
1.0
|
2932 |
+
],
|
2933 |
+
"mask": [
|
2934 |
+
true,
|
2935 |
+
true,
|
2936 |
+
true,
|
2937 |
+
true,
|
2938 |
+
true,
|
2939 |
+
true,
|
2940 |
+
false
|
2941 |
+
]
|
2942 |
+
},
|
2943 |
+
"proprio": {
|
2944 |
+
"mean": [
|
2945 |
+
0.0,
|
2946 |
+
0.0,
|
2947 |
+
0.0,
|
2948 |
+
0.0,
|
2949 |
+
0.0,
|
2950 |
+
0.0,
|
2951 |
+
0.0
|
2952 |
+
],
|
2953 |
+
"std": [
|
2954 |
+
0.0,
|
2955 |
+
0.0,
|
2956 |
+
0.0,
|
2957 |
+
0.0,
|
2958 |
+
0.0,
|
2959 |
+
0.0,
|
2960 |
+
0.0
|
2961 |
+
],
|
2962 |
+
"max": [
|
2963 |
+
0.0,
|
2964 |
+
0.0,
|
2965 |
+
0.0,
|
2966 |
+
0.0,
|
2967 |
+
0.0,
|
2968 |
+
0.0,
|
2969 |
+
0.0
|
2970 |
+
],
|
2971 |
+
"min": [
|
2972 |
+
0.0,
|
2973 |
+
0.0,
|
2974 |
+
0.0,
|
2975 |
+
0.0,
|
2976 |
+
0.0,
|
2977 |
+
0.0,
|
2978 |
+
0.0
|
2979 |
+
],
|
2980 |
+
"q01": [
|
2981 |
+
0.0,
|
2982 |
+
0.0,
|
2983 |
+
0.0,
|
2984 |
+
0.0,
|
2985 |
+
0.0,
|
2986 |
+
0.0,
|
2987 |
+
0.0
|
2988 |
+
],
|
2989 |
+
"q99": [
|
2990 |
+
0.0,
|
2991 |
+
0.0,
|
2992 |
+
0.0,
|
2993 |
+
0.0,
|
2994 |
+
0.0,
|
2995 |
+
0.0,
|
2996 |
+
0.0
|
2997 |
+
]
|
2998 |
+
},
|
2999 |
+
"num_transitions": 6015535,
|
3000 |
+
"num_trajectories": 43264
|
3001 |
+
},
|
3002 |
+
"fmb_dataset/1.0.0": {
|
3003 |
+
"action": {
|
3004 |
+
"mean": [
|
3005 |
+
0.05902976542711258,
|
3006 |
+
-0.06476633995771408,
|
3007 |
+
-0.09787469357252121,
|
3008 |
+
0.004325387068092823,
|
3009 |
+
0.00028963759541511536,
|
3010 |
+
-0.04457257315516472,
|
3011 |
+
0.7336440086364746
|
3012 |
+
],
|
3013 |
+
"std": [
|
3014 |
+
0.28809186816215515,
|
3015 |
+
0.2820416986942291,
|
3016 |
+
0.4626740515232086,
|
3017 |
+
0.3266514539718628,
|
3018 |
+
0.10842999070882797,
|
3019 |
+
0.34400978684425354,
|
3020 |
+
0.4435289800167084
|
3021 |
+
],
|
3022 |
+
"max": [
|
3023 |
+
1.399999976158142,
|
3024 |
+
1.0,
|
3025 |
+
1.399999976158142,
|
3026 |
+
1.0,
|
3027 |
+
1.0,
|
3028 |
+
1.0,
|
3029 |
+
1.0
|
3030 |
+
],
|
3031 |
+
"min": [
|
3032 |
+
-1.399999976158142,
|
3033 |
+
-1.399999976158142,
|
3034 |
+
-1.0,
|
3035 |
+
-1.0,
|
3036 |
+
-1.0,
|
3037 |
+
-1.0,
|
3038 |
+
0.0
|
3039 |
+
],
|
3040 |
+
"q01": [
|
3041 |
+
-0.8257142901420593,
|
3042 |
+
-1.399999976158142,
|
3043 |
+
-1.0,
|
3044 |
+
-1.0,
|
3045 |
+
-0.3028571307659149,
|
3046 |
+
-1.0,
|
3047 |
+
0.0
|
3048 |
+
],
|
3049 |
+
"q99": [
|
3050 |
+
1.0,
|
3051 |
+
0.5257142782211304,
|
3052 |
+
1.0,
|
3053 |
+
1.0,
|
3054 |
+
0.3400000035762787,
|
3055 |
+
1.0,
|
3056 |
+
1.0
|
3057 |
+
],
|
3058 |
+
"mask": [
|
3059 |
+
true,
|
3060 |
+
true,
|
3061 |
+
true,
|
3062 |
+
true,
|
3063 |
+
true,
|
3064 |
+
true,
|
3065 |
+
false
|
3066 |
+
]
|
3067 |
+
},
|
3068 |
+
"proprio": {
|
3069 |
+
"mean": [
|
3070 |
+
0.0,
|
3071 |
+
0.0,
|
3072 |
+
0.0,
|
3073 |
+
0.0,
|
3074 |
+
0.0,
|
3075 |
+
0.0,
|
3076 |
+
0.0
|
3077 |
+
],
|
3078 |
+
"std": [
|
3079 |
+
0.0,
|
3080 |
+
0.0,
|
3081 |
+
0.0,
|
3082 |
+
0.0,
|
3083 |
+
0.0,
|
3084 |
+
0.0,
|
3085 |
+
0.0
|
3086 |
+
],
|
3087 |
+
"max": [
|
3088 |
+
0.0,
|
3089 |
+
0.0,
|
3090 |
+
0.0,
|
3091 |
+
0.0,
|
3092 |
+
0.0,
|
3093 |
+
0.0,
|
3094 |
+
0.0
|
3095 |
+
],
|
3096 |
+
"min": [
|
3097 |
+
0.0,
|
3098 |
+
0.0,
|
3099 |
+
0.0,
|
3100 |
+
0.0,
|
3101 |
+
0.0,
|
3102 |
+
0.0,
|
3103 |
+
0.0
|
3104 |
+
],
|
3105 |
+
"q01": [
|
3106 |
+
0.0,
|
3107 |
+
0.0,
|
3108 |
+
0.0,
|
3109 |
+
0.0,
|
3110 |
+
0.0,
|
3111 |
+
0.0,
|
3112 |
+
0.0
|
3113 |
+
],
|
3114 |
+
"q99": [
|
3115 |
+
0.0,
|
3116 |
+
0.0,
|
3117 |
+
0.0,
|
3118 |
+
0.0,
|
3119 |
+
0.0,
|
3120 |
+
0.0,
|
3121 |
+
0.0
|
3122 |
+
]
|
3123 |
+
},
|
3124 |
+
"num_transitions": 1137459,
|
3125 |
+
"num_trajectories": 8612
|
3126 |
+
},
|
3127 |
+
"dobbe/0.0.1": {
|
3128 |
+
"action": {
|
3129 |
+
"mean": [
|
3130 |
+
-0.00011206958151888102,
|
3131 |
+
0.0011229681549593806,
|
3132 |
+
-0.00010193959315074608,
|
3133 |
+
-7.37128357286565e-05,
|
3134 |
+
-0.0006753374473191798,
|
3135 |
+
-5.664441778208129e-05,
|
3136 |
+
0.6318688988685608
|
3137 |
+
],
|
3138 |
+
"std": [
|
3139 |
+
0.042660679668188095,
|
3140 |
+
0.04428431764245033,
|
3141 |
+
0.12224890291690826,
|
3142 |
+
0.005388470832258463,
|
3143 |
+
0.011246936395764351,
|
3144 |
+
0.006288259290158749,
|
3145 |
+
0.3973240256309509
|
3146 |
+
],
|
3147 |
+
"max": [
|
3148 |
+
38.590423583984375,
|
3149 |
+
17.932697296142578,
|
3150 |
+
4.843764305114746,
|
3151 |
+
1.4372116327285767,
|
3152 |
+
0.4340403974056244,
|
3153 |
+
1.2057193517684937,
|
3154 |
+
0.9998947381973267
|
3155 |
+
],
|
3156 |
+
"min": [
|
3157 |
+
-5.700923442840576,
|
3158 |
+
-21.605947494506836,
|
3159 |
+
-123.72489929199219,
|
3160 |
+
-1.7229845523834229,
|
3161 |
+
-0.4998578727245331,
|
3162 |
+
-0.8867913484573364,
|
3163 |
+
1.4196479014572105e-06
|
3164 |
+
],
|
3165 |
+
"q01": [
|
3166 |
+
-0.01119564864784479,
|
3167 |
+
-0.014266146533191203,
|
3168 |
+
-0.0071747214533388615,
|
3169 |
+
-0.009444301575422287,
|
3170 |
+
-0.03990109823644161,
|
3171 |
+
-0.017422311007976532,
|
3172 |
+
4.003279136668425e-05
|
3173 |
+
],
|
3174 |
+
"q99": [
|
3175 |
+
0.01015154086053368,
|
3176 |
+
0.017181577533483497,
|
3177 |
+
0.007216989761218411,
|
3178 |
+
0.010380979906767595,
|
3179 |
+
0.03556173853576176,
|
3180 |
+
0.018032474815845446,
|
3181 |
+
0.9982578039169312
|
3182 |
+
],
|
3183 |
+
"mask": [
|
3184 |
+
true,
|
3185 |
+
true,
|
3186 |
+
true,
|
3187 |
+
true,
|
3188 |
+
true,
|
3189 |
+
true,
|
3190 |
+
false
|
3191 |
+
]
|
3192 |
+
},
|
3193 |
+
"proprio": {
|
3194 |
+
"mean": [
|
3195 |
+
0.0,
|
3196 |
+
0.0,
|
3197 |
+
0.0,
|
3198 |
+
0.0,
|
3199 |
+
0.0,
|
3200 |
+
0.0,
|
3201 |
+
0.0
|
3202 |
+
],
|
3203 |
+
"std": [
|
3204 |
+
0.0,
|
3205 |
+
0.0,
|
3206 |
+
0.0,
|
3207 |
+
0.0,
|
3208 |
+
0.0,
|
3209 |
+
0.0,
|
3210 |
+
0.0
|
3211 |
+
],
|
3212 |
+
"max": [
|
3213 |
+
0.0,
|
3214 |
+
0.0,
|
3215 |
+
0.0,
|
3216 |
+
0.0,
|
3217 |
+
0.0,
|
3218 |
+
0.0,
|
3219 |
+
0.0
|
3220 |
+
],
|
3221 |
+
"min": [
|
3222 |
+
0.0,
|
3223 |
+
0.0,
|
3224 |
+
0.0,
|
3225 |
+
0.0,
|
3226 |
+
0.0,
|
3227 |
+
0.0,
|
3228 |
+
0.0
|
3229 |
+
],
|
3230 |
+
"q01": [
|
3231 |
+
0.0,
|
3232 |
+
0.0,
|
3233 |
+
0.0,
|
3234 |
+
0.0,
|
3235 |
+
0.0,
|
3236 |
+
0.0,
|
3237 |
+
0.0
|
3238 |
+
],
|
3239 |
+
"q99": [
|
3240 |
+
0.0,
|
3241 |
+
0.0,
|
3242 |
+
0.0,
|
3243 |
+
0.0,
|
3244 |
+
0.0,
|
3245 |
+
0.0,
|
3246 |
+
0.0
|
3247 |
+
]
|
3248 |
+
},
|
3249 |
+
"num_transitions": 1139911,
|
3250 |
+
"num_trajectories": 5208
|
3251 |
+
},
|
3252 |
+
"droid/1.0.0": {
|
3253 |
+
"action": {
|
3254 |
+
"mean": [
|
3255 |
+
0.027425529435276985,
|
3256 |
+
-0.0026820411439985037,
|
3257 |
+
0.01595238223671913,
|
3258 |
+
0.0035501928068697453,
|
3259 |
+
-0.030532635748386383,
|
3260 |
+
-0.006685464642941952,
|
3261 |
+
0.5860344171524048
|
3262 |
+
],
|
3263 |
+
"std": [
|
3264 |
+
0.25387412309646606,
|
3265 |
+
0.18426834046840668,
|
3266 |
+
0.22532416880130768,
|
3267 |
+
0.21757009625434875,
|
3268 |
+
0.22572560608386993,
|
3269 |
+
0.2867794930934906,
|
3270 |
+
0.4287726879119873
|
3271 |
+
],
|
3272 |
+
"max": [
|
3273 |
+
0.9999998211860657,
|
3274 |
+
0.999991774559021,
|
3275 |
+
0.9999973177909851,
|
3276 |
+
0.9999874830245972,
|
3277 |
+
0.9999954104423523,
|
3278 |
+
0.9999998807907104,
|
3279 |
+
1.0
|
3280 |
+
],
|
3281 |
+
"min": [
|
3282 |
+
-0.9999999403953552,
|
3283 |
+
-0.9999951124191284,
|
3284 |
+
-0.9999960660934448,
|
3285 |
+
-0.9999980330467224,
|
3286 |
+
-0.9999982118606567,
|
3287 |
+
-0.9999998807907104,
|
3288 |
+
0.0
|
3289 |
+
],
|
3290 |
+
"q01": [
|
3291 |
+
-0.7776297926902771,
|
3292 |
+
-0.5803514122962952,
|
3293 |
+
-0.5795090794563293,
|
3294 |
+
-0.6464047729969025,
|
3295 |
+
-0.7041108310222626,
|
3296 |
+
-0.8895104378461838,
|
3297 |
+
0.0
|
3298 |
+
],
|
3299 |
+
"q99": [
|
3300 |
+
0.7597932070493698,
|
3301 |
+
0.5726242214441299,
|
3302 |
+
0.7351000607013702,
|
3303 |
+
0.6705610305070877,
|
3304 |
+
0.6464948207139969,
|
3305 |
+
0.8897542208433151,
|
3306 |
+
1.0
|
3307 |
+
],
|
3308 |
+
"mask": [
|
3309 |
+
true,
|
3310 |
+
true,
|
3311 |
+
true,
|
3312 |
+
true,
|
3313 |
+
true,
|
3314 |
+
true,
|
3315 |
+
false
|
3316 |
+
]
|
3317 |
+
},
|
3318 |
+
"proprio": {
|
3319 |
+
"mean": [
|
3320 |
+
0.0,
|
3321 |
+
0.0,
|
3322 |
+
0.0,
|
3323 |
+
0.0,
|
3324 |
+
0.0,
|
3325 |
+
0.0,
|
3326 |
+
0.0
|
3327 |
+
],
|
3328 |
+
"std": [
|
3329 |
+
0.0,
|
3330 |
+
0.0,
|
3331 |
+
0.0,
|
3332 |
+
0.0,
|
3333 |
+
0.0,
|
3334 |
+
0.0,
|
3335 |
+
0.0
|
3336 |
+
],
|
3337 |
+
"max": [
|
3338 |
+
0.0,
|
3339 |
+
0.0,
|
3340 |
+
0.0,
|
3341 |
+
0.0,
|
3342 |
+
0.0,
|
3343 |
+
0.0,
|
3344 |
+
0.0
|
3345 |
+
],
|
3346 |
+
"min": [
|
3347 |
+
0.0,
|
3348 |
+
0.0,
|
3349 |
+
0.0,
|
3350 |
+
0.0,
|
3351 |
+
0.0,
|
3352 |
+
0.0,
|
3353 |
+
0.0
|
3354 |
+
],
|
3355 |
+
"q01": [
|
3356 |
+
0.0,
|
3357 |
+
0.0,
|
3358 |
+
0.0,
|
3359 |
+
0.0,
|
3360 |
+
0.0,
|
3361 |
+
0.0,
|
3362 |
+
0.0
|
3363 |
+
],
|
3364 |
+
"q99": [
|
3365 |
+
0.0,
|
3366 |
+
0.0,
|
3367 |
+
0.0,
|
3368 |
+
0.0,
|
3369 |
+
0.0,
|
3370 |
+
0.0,
|
3371 |
+
0.0
|
3372 |
+
]
|
3373 |
+
},
|
3374 |
+
"num_transitions": 27044326,
|
3375 |
+
"num_trajectories": 92233
|
3376 |
+
},
|
3377 |
+
"rh20t_rlds/1.0.0": {
|
3378 |
+
"action": {
|
3379 |
+
"mean": [
|
3380 |
+
-5.332157638779582e+28,
|
3381 |
+
-1.5128827327837974e+29,
|
3382 |
+
-1.832736619079747e+28,
|
3383 |
+
0.5735913515090942,
|
3384 |
+
-0.00847744569182396,
|
3385 |
+
-0.5566052198410034,
|
3386 |
+
0.3186892569065094
|
3387 |
+
],
|
3388 |
+
"std": [
|
3389 |
+
Infinity,
|
3390 |
+
Infinity,
|
3391 |
+
Infinity,
|
3392 |
+
2.2581026554107666,
|
3393 |
+
0.1548534482717514,
|
3394 |
+
2.2581026554107666,
|
3395 |
+
0.39917993545532227
|
3396 |
+
],
|
3397 |
+
"max": [
|
3398 |
+
7.582831568163597e+35,
|
3399 |
+
7.557172735451728e+35,
|
3400 |
+
2.2717764477020827e+27,
|
3401 |
+
3.1415927410125732,
|
3402 |
+
1.5116956233978271,
|
3403 |
+
3.1415927410125732,
|
3404 |
+
1.0
|
3405 |
+
],
|
3406 |
+
"min": [
|
3407 |
+
-3.5543094244408723e+36,
|
3408 |
+
-8.723098019507117e+36,
|
3409 |
+
-9.648338287048974e+35,
|
3410 |
+
-3.1415927410125732,
|
3411 |
+
-1.5062522888183594,
|
3412 |
+
-3.1415927410125732,
|
3413 |
+
0.0
|
3414 |
+
],
|
3415 |
+
"q01": [
|
3416 |
+
0.36028257966041566,
|
3417 |
+
-0.272584410905838,
|
3418 |
+
0.005985925104469062,
|
3419 |
+
-3.1411514282226562,
|
3420 |
+
-0.5925320792198181,
|
3421 |
+
-3.1415159702301025,
|
3422 |
+
0.0
|
3423 |
+
],
|
3424 |
+
"q99": [
|
3425 |
+
0.7534684538841248,
|
3426 |
+
0.31738221645355225,
|
3427 |
+
0.33061375379562374,
|
3428 |
+
3.141425132751465,
|
3429 |
+
0.47507260441780086,
|
3430 |
+
3.141479730606079,
|
3431 |
+
1.0
|
3432 |
+
],
|
3433 |
+
"mask": [
|
3434 |
+
true,
|
3435 |
+
true,
|
3436 |
+
true,
|
3437 |
+
true,
|
3438 |
+
true,
|
3439 |
+
true,
|
3440 |
+
false
|
3441 |
+
]
|
3442 |
+
},
|
3443 |
+
"proprio": {
|
3444 |
+
"mean": [
|
3445 |
+
0.0,
|
3446 |
+
0.0,
|
3447 |
+
0.0,
|
3448 |
+
0.0,
|
3449 |
+
0.0,
|
3450 |
+
0.0,
|
3451 |
+
0.0
|
3452 |
+
],
|
3453 |
+
"std": [
|
3454 |
+
0.0,
|
3455 |
+
0.0,
|
3456 |
+
0.0,
|
3457 |
+
0.0,
|
3458 |
+
0.0,
|
3459 |
+
0.0,
|
3460 |
+
0.0
|
3461 |
+
],
|
3462 |
+
"max": [
|
3463 |
+
0.0,
|
3464 |
+
0.0,
|
3465 |
+
0.0,
|
3466 |
+
0.0,
|
3467 |
+
0.0,
|
3468 |
+
0.0,
|
3469 |
+
0.0
|
3470 |
+
],
|
3471 |
+
"min": [
|
3472 |
+
0.0,
|
3473 |
+
0.0,
|
3474 |
+
0.0,
|
3475 |
+
0.0,
|
3476 |
+
0.0,
|
3477 |
+
0.0,
|
3478 |
+
0.0
|
3479 |
+
],
|
3480 |
+
"q01": [
|
3481 |
+
0.0,
|
3482 |
+
0.0,
|
3483 |
+
0.0,
|
3484 |
+
0.0,
|
3485 |
+
0.0,
|
3486 |
+
0.0,
|
3487 |
+
0.0
|
3488 |
+
],
|
3489 |
+
"q99": [
|
3490 |
+
0.0,
|
3491 |
+
0.0,
|
3492 |
+
0.0,
|
3493 |
+
0.0,
|
3494 |
+
0.0,
|
3495 |
+
0.0,
|
3496 |
+
0.0
|
3497 |
+
]
|
3498 |
+
},
|
3499 |
+
"num_transitions": 52644433,
|
3500 |
+
"num_trajectories": 104392
|
3501 |
+
}
|
3502 |
+
}
|
example.png
ADDED
![]() |
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"cache_implementation": "hybrid",
|
5 |
+
"eos_token_id": 1,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"transformers_version": "4.47.0"
|
8 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca1014c81284474e05df34c9114892635ac6402a252867d424b2a8335e7276a7
|
3 |
+
size 4969426016
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07090d7f3cfb91a75c08fc0513bd05994154c347043ac0894ffb899744b57281
|
3 |
+
size 3086476734
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_ego3d.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
|
3 |
+
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
|
4 |
+
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
|
5 |
+
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
6 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
7 |
+
# coding=utf-8
|
8 |
+
|
9 |
+
"""Modified Flash version of zoe model for fast training."""
|
10 |
+
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from torch import nn
|
13 |
+
from transformers.utils import logging
|
14 |
+
import torchvision.transforms.functional as F
|
15 |
+
import numpy as np
|
16 |
+
import math
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class Ego3DPositionEmbeddingMLP(nn.Module):
|
22 |
+
"""Absolute pos embedding, learned.
|
23 |
+
https://github.com/kwea123/nerf_pl/blob/52aeb387da64a9ad9a0f914ea9b049ffc598b20c/models/nerf.py#L4
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, in_channels=3, num_pos_feats=768, n_freqs=8, logscale=True):
|
27 |
+
super(Ego3DPositionEmbeddingMLP, self).__init__()
|
28 |
+
self.n_freqs = n_freqs
|
29 |
+
self.freq_out_channels = in_channels * (2 * n_freqs + 1)
|
30 |
+
if logscale:
|
31 |
+
freq_bands = 2 ** torch.linspace(0, n_freqs - 1, n_freqs)
|
32 |
+
else:
|
33 |
+
freq_bands = torch.linspace(1, 2 ** (n_freqs - 1), n_freqs)
|
34 |
+
|
35 |
+
center = torch.tensor([0., 0., 2.]).repeat(in_channels // 3)
|
36 |
+
self.register_buffer("freq_bands", freq_bands, persistent=False)
|
37 |
+
self.register_buffer("center", center, persistent=False)
|
38 |
+
|
39 |
+
self.position_embedding_head = nn.Sequential(
|
40 |
+
nn.Linear(self.freq_out_channels, num_pos_feats),
|
41 |
+
nn.LayerNorm(num_pos_feats),
|
42 |
+
nn.ReLU(),
|
43 |
+
nn.Linear(num_pos_feats, num_pos_feats),
|
44 |
+
)
|
45 |
+
self._reset_parameters()
|
46 |
+
|
47 |
+
def _reset_parameters(self):
|
48 |
+
"""init with small weights to maintain stable training."""
|
49 |
+
for p in self.parameters():
|
50 |
+
if p.dim() > 1:
|
51 |
+
nn.init.xavier_uniform_(p, gain=0.01)
|
52 |
+
|
53 |
+
@torch.no_grad()
|
54 |
+
def frequency_encoding(self, xyz):
|
55 |
+
"""
|
56 |
+
Embeds x to (x, sin(2^k x), cos(2^k x), ...)
|
57 |
+
Different from the paper, "x" is also in the output
|
58 |
+
See https://github.com/bmild/nerf/issues/12
|
59 |
+
x \in [-2, 2]
|
60 |
+
y \in [-2, 2]
|
61 |
+
z \in [0., 4]
|
62 |
+
Inputs:
|
63 |
+
x: (b n m)
|
64 |
+
Outputs:
|
65 |
+
out: (b n o)
|
66 |
+
"""
|
67 |
+
xyz_n = ((xyz - self.center) / 2.0).to(self.freq_bands.dtype)
|
68 |
+
xyz_feq = xyz_n.unsqueeze(-1) * self.freq_bands # (b n m 1)
|
69 |
+
sin_xyz, cos_xyz = torch.sin(xyz_feq), torch.cos(xyz_feq) # (b n m nf)
|
70 |
+
encoding = torch.cat([xyz_n.unsqueeze(-1), sin_xyz, cos_xyz], -1).reshape(*xyz.shape[:2], -1)
|
71 |
+
return encoding
|
72 |
+
|
73 |
+
def forward(self, xyz):
|
74 |
+
"""Forward pass, xyz is (B, N, 3or6), output (B, N, F)."""
|
75 |
+
# TODO: encoding with 3D position
|
76 |
+
freq_encoding = self.frequency_encoding(xyz)
|
77 |
+
position_embedding = self.position_embedding_head(freq_encoding)
|
78 |
+
return position_embedding
|
79 |
+
|
80 |
+
|
81 |
+
def get_resize_output_image_size(
|
82 |
+
input_height: int,
|
83 |
+
input_width: int,
|
84 |
+
output_size: tuple = (384, 512),
|
85 |
+
keep_aspect_ratio: bool = True,
|
86 |
+
multiple: int = 32,
|
87 |
+
):
|
88 |
+
def constrain_to_multiple_of(val, multiple, min_val=0):
|
89 |
+
x = (np.round(val / multiple) * multiple).astype(int)
|
90 |
+
if x < min_val:
|
91 |
+
x = math.ceil(val / multiple) * multiple
|
92 |
+
return x
|
93 |
+
|
94 |
+
output_height, output_width = output_size
|
95 |
+
scale_height = output_height / input_height
|
96 |
+
scale_width = output_width / input_width
|
97 |
+
|
98 |
+
if keep_aspect_ratio:
|
99 |
+
# scale as little as possible
|
100 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
101 |
+
scale_height = scale_width
|
102 |
+
else:
|
103 |
+
scale_width = scale_height
|
104 |
+
|
105 |
+
new_height = constrain_to_multiple_of(scale_height * input_height, multiple=multiple)
|
106 |
+
new_width = constrain_to_multiple_of(scale_width * input_width, multiple=multiple)
|
107 |
+
|
108 |
+
return (int(new_height), int(new_width))
|
109 |
+
|
110 |
+
|
111 |
+
def process_zoe(pixel_values, pad_mode="reflect", output_size=(384, 512)):
|
112 |
+
"""https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/models/zoedepth/image_processing_zoedepth.py"""
|
113 |
+
# h, w = images.shape[-2:]
|
114 |
+
# pad images
|
115 |
+
ph, pw = 31, 31 # int((h / 2)**0.5 * 3), int((w / 2)**0.5 * 3) # 32, 31
|
116 |
+
images = torch.nn.functional.pad(pixel_values, (pw, pw, ph, ph), mode=pad_mode)
|
117 |
+
|
118 |
+
# resize images
|
119 |
+
size = (384, 384) # get_resize_output_image_size(h, w, output_size=output_size, keep_aspect_ratio=True, multiple=32) # 384, 384
|
120 |
+
images = torch.nn.functional.interpolate(images, size=size, mode="bicubic", align_corners=True)
|
121 |
+
|
122 |
+
# NOTE: zoe: padding -> resize -> nomalize.
|
123 |
+
# BUT: siglip processor get nomalized image, we simplely follow `nomalize -> padding -> resize` in reflect pad mode
|
124 |
+
ZOE_MEAN, ZOE_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
|
125 |
+
images = F.normalize(images, mean=ZOE_MEAN, std=ZOE_STD)
|
126 |
+
return images, ph, pw
|
modeling_gemma2.py
ADDED
@@ -0,0 +1,1285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# custom gemma2 to support flash_attention_2
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from transformers.activations import ACT2FN
|
23 |
+
from transformers.cache_utils import Cache, HybridCache
|
24 |
+
from transformers.generation import GenerationMixin
|
25 |
+
from transformers.modeling_outputs import (
|
26 |
+
BaseModelOutputWithPast,
|
27 |
+
CausalLMOutputWithPast,
|
28 |
+
SequenceClassifierOutputWithPast,
|
29 |
+
TokenClassifierOutput,
|
30 |
+
)
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.utils import (
|
33 |
+
add_code_sample_docstrings,
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
is_flash_attn_2_available,
|
37 |
+
is_flash_attn_greater_or_equal,
|
38 |
+
is_torch_greater_or_equal,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
is_flash_attn_greater_or_equal_2_10,
|
42 |
+
)
|
43 |
+
from transformers import Gemma2Config
|
44 |
+
|
45 |
+
|
46 |
+
if is_flash_attn_2_available():
|
47 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
48 |
+
|
49 |
+
if is_torch_greater_or_equal("2.5"):
|
50 |
+
from torch.nn.attention.flex_attention import flex_attention
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "google/gemma2-7b"
|
56 |
+
_CONFIG_FOR_DOC = "Gemma2Config"
|
57 |
+
|
58 |
+
|
59 |
+
class Gemma2RMSNorm(nn.Module):
|
60 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
61 |
+
super().__init__()
|
62 |
+
self.eps = eps
|
63 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
64 |
+
|
65 |
+
def _norm(self, x):
|
66 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
output = self._norm(x.float())
|
70 |
+
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
|
71 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
72 |
+
output = output * (1.0 + self.weight.float())
|
73 |
+
return output.type_as(x)
|
74 |
+
|
75 |
+
def extra_repr(self):
|
76 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
77 |
+
|
78 |
+
|
79 |
+
class Gemma2MLP(nn.Module):
|
80 |
+
def __init__(self, config):
|
81 |
+
super().__init__()
|
82 |
+
self.config = config
|
83 |
+
self.hidden_size = config.hidden_size
|
84 |
+
self.intermediate_size = config.intermediate_size
|
85 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
86 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
87 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
88 |
+
self.act_fn = ACT2FN[config.hidden_activation]
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
92 |
+
|
93 |
+
|
94 |
+
class Gemma2RotaryEmbedding(nn.Module):
|
95 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.dim = dim
|
99 |
+
self.max_position_embeddings = max_position_embeddings
|
100 |
+
self.base = base
|
101 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
102 |
+
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
def forward(self, x, position_ids, seq_len=None):
|
106 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
107 |
+
self.inv_freq.to(x.device)
|
108 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
109 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
110 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
111 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
112 |
+
device_type = x.device.type
|
113 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
114 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
115 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
116 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
117 |
+
cos = emb.cos()
|
118 |
+
sin = emb.sin()
|
119 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
120 |
+
|
121 |
+
|
122 |
+
def rotate_half(x):
|
123 |
+
"""Rotates half the hidden dims of the input."""
|
124 |
+
x1 = x[..., : x.shape[-1] // 2]
|
125 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
126 |
+
return torch.cat((-x2, x1), dim=-1)
|
127 |
+
|
128 |
+
|
129 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
130 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
q (`torch.Tensor`): The query tensor.
|
134 |
+
k (`torch.Tensor`): The key tensor.
|
135 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
136 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
137 |
+
position_ids (`torch.Tensor`, *optional*):
|
138 |
+
Deprecated and unused.
|
139 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
140 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
141 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
142 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
143 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
144 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
145 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
146 |
+
Returns:
|
147 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
148 |
+
"""
|
149 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
150 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
151 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
152 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
153 |
+
return q_embed, k_embed
|
154 |
+
|
155 |
+
|
156 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
157 |
+
"""
|
158 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
159 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
160 |
+
"""
|
161 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
162 |
+
if n_rep == 1:
|
163 |
+
return hidden_states
|
164 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
165 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
166 |
+
|
167 |
+
|
168 |
+
def eager_attention_forward(
|
169 |
+
config: Gemma2Config,
|
170 |
+
query: torch.Tensor,
|
171 |
+
key: torch.Tensor,
|
172 |
+
value: torch.Tensor,
|
173 |
+
mask: Optional[torch.Tensor],
|
174 |
+
**_kwargs,
|
175 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
176 |
+
key_states = repeat_kv(key, config.num_key_value_groups)
|
177 |
+
value_states = repeat_kv(value, config.num_key_value_groups)
|
178 |
+
|
179 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * config.scaling
|
180 |
+
|
181 |
+
if config.attn_logit_softcapping is not None:
|
182 |
+
attn_weights = attn_weights / config.attn_logit_softcapping
|
183 |
+
attn_weights = torch.tanh(attn_weights)
|
184 |
+
attn_weights = attn_weights * config.attn_logit_softcapping
|
185 |
+
if mask is not None: # no matter the length, we just slice it
|
186 |
+
causal_mask = mask[:, :, :, : key_states.shape[-2]]
|
187 |
+
attn_weights = attn_weights + causal_mask
|
188 |
+
|
189 |
+
# upcast attention to fp32
|
190 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
191 |
+
attn_weights = nn.functional.dropout(attn_weights, p=config.attention_dropout, training=config.training)
|
192 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
193 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
194 |
+
return attn_output, attn_weights
|
195 |
+
|
196 |
+
|
197 |
+
def flash_attention_forward(
|
198 |
+
config: Gemma2Config,
|
199 |
+
query: torch.Tensor,
|
200 |
+
key: torch.Tensor,
|
201 |
+
value: torch.Tensor,
|
202 |
+
mask: Optional[torch.Tensor],
|
203 |
+
target_dtype: torch.dtype = torch.float16,
|
204 |
+
**_kwargs,
|
205 |
+
) -> Tuple[torch.Tensor, None]:
|
206 |
+
# NOTE: None mask cause un defined https://github.com/huggingface/transformers/blob/c8c8dffbe45ebef0a8dba4a51024e5e5e498596b/src/transformers/models/gemma2/modeling_gemma2.py#L211
|
207 |
+
seq_len = query.shape[2]
|
208 |
+
# print(f"🔥 query {query.shape}, key {key.shape}, value: {value.shape}")
|
209 |
+
if mask is not None:
|
210 |
+
# print(f"🔥 mask {mask.shape}")
|
211 |
+
# seq_len = mask.shape[1]
|
212 |
+
query = query[:, :, :seq_len]
|
213 |
+
value = value[:, :, :seq_len]
|
214 |
+
|
215 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
216 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor rotary embedding
|
217 |
+
query_states = query.transpose(1, 2)
|
218 |
+
key_states = key.transpose(1, 2)
|
219 |
+
value_states = value.transpose(1, 2)
|
220 |
+
|
221 |
+
dropout_rate = config.attention_dropout if config.training else 0.0
|
222 |
+
|
223 |
+
input_dtype = query_states.dtype
|
224 |
+
if input_dtype == torch.float32:
|
225 |
+
query_states = query_states.to(target_dtype)
|
226 |
+
key_states = key_states.to(target_dtype)
|
227 |
+
value_states = value_states.to(target_dtype)
|
228 |
+
|
229 |
+
attn_output = _flash_attention_forward(
|
230 |
+
query_states,
|
231 |
+
key_states,
|
232 |
+
value_states,
|
233 |
+
mask,
|
234 |
+
seq_len,
|
235 |
+
dropout=dropout_rate,
|
236 |
+
softmax_scale=config.scaling,
|
237 |
+
is_causal=config.is_causal,
|
238 |
+
sliding_window=config.sliding_window,
|
239 |
+
use_top_left_mask=config._flash_attn_uses_top_left_mask,
|
240 |
+
softcap=config.attn_logit_softcapping if is_flash_attn_greater_or_equal("2.6.0") else None,
|
241 |
+
)
|
242 |
+
|
243 |
+
return attn_output, None
|
244 |
+
|
245 |
+
|
246 |
+
def flex_attention_forward(
|
247 |
+
config: Gemma2Config,
|
248 |
+
query: torch.Tensor,
|
249 |
+
key: torch.Tensor,
|
250 |
+
value: torch.Tensor,
|
251 |
+
mask: Optional[torch.Tensor],
|
252 |
+
output_attentions: bool = False,
|
253 |
+
**_kwargs,
|
254 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
255 |
+
def tanh_softcap(score, b, h, q_idx, kv_idx):
|
256 |
+
soft_cap = config.attn_logit_softcapping
|
257 |
+
score = soft_cap * torch.tanh(score / soft_cap)
|
258 |
+
if mask is not None:
|
259 |
+
return score + mask[b][0][q_idx][kv_idx]
|
260 |
+
return score
|
261 |
+
|
262 |
+
attn_output = flex_attention(
|
263 |
+
query,
|
264 |
+
key,
|
265 |
+
value,
|
266 |
+
score_mod=tanh_softcap,
|
267 |
+
enable_gqa=True,
|
268 |
+
scale=config.scaling,
|
269 |
+
return_lse=output_attentions,
|
270 |
+
)
|
271 |
+
if not output_attentions:
|
272 |
+
attn_weights = None
|
273 |
+
else:
|
274 |
+
attn_output, attn_weights = attn_output
|
275 |
+
|
276 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
277 |
+
return attn_output, attn_weights
|
278 |
+
|
279 |
+
|
280 |
+
def sdpa_attention_forward(
|
281 |
+
config: Gemma2Config,
|
282 |
+
query: torch.Tensor,
|
283 |
+
key: torch.Tensor,
|
284 |
+
value: torch.Tensor,
|
285 |
+
mask: Optional[torch.Tensor],
|
286 |
+
**_kwargs,
|
287 |
+
) -> Tuple[torch.Tensor, None]:
|
288 |
+
key = repeat_kv(key, config.num_key_value_groups)
|
289 |
+
value = repeat_kv(value, config.num_key_value_groups)
|
290 |
+
|
291 |
+
causal_mask = mask
|
292 |
+
if mask is not None:
|
293 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
294 |
+
|
295 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
296 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
297 |
+
if query.device.type == "cuda" and causal_mask is not None:
|
298 |
+
query = query.contiguous()
|
299 |
+
key = key.contiguous()
|
300 |
+
value = value.contiguous()
|
301 |
+
|
302 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
303 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
304 |
+
is_causal = True if causal_mask is None and query.shape[1] > 1 else False
|
305 |
+
|
306 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
307 |
+
query,
|
308 |
+
key,
|
309 |
+
value,
|
310 |
+
attn_mask=causal_mask,
|
311 |
+
dropout_p=config.attention_dropout if config.training else 0.0,
|
312 |
+
is_causal=is_causal,
|
313 |
+
scale=config.scaling,
|
314 |
+
)
|
315 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
316 |
+
return attn_output, None
|
317 |
+
|
318 |
+
|
319 |
+
GEMMA2_ATTENTION_FUNCTION = {
|
320 |
+
"flash_attention_2": flash_attention_forward,
|
321 |
+
"flex_attention": flex_attention_forward,
|
322 |
+
"eager": eager_attention_forward,
|
323 |
+
"sdpa": sdpa_attention_forward,
|
324 |
+
}
|
325 |
+
|
326 |
+
|
327 |
+
class Gemma2Attention(nn.Module):
|
328 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
329 |
+
|
330 |
+
def __init__(self, config: Gemma2Config, layer_idx: Optional[int] = None):
|
331 |
+
super().__init__()
|
332 |
+
self.config = config
|
333 |
+
self.layer_idx = layer_idx
|
334 |
+
|
335 |
+
self.attention_dropout = config.attention_dropout
|
336 |
+
self.hidden_size = config.hidden_size
|
337 |
+
self.num_heads = config.num_attention_heads
|
338 |
+
self.head_dim = config.head_dim
|
339 |
+
self.num_key_value_heads = config.num_key_value_heads
|
340 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
341 |
+
self.max_position_embeddings = config.max_position_embeddings
|
342 |
+
self.rope_theta = config.rope_theta
|
343 |
+
self.is_causal = True
|
344 |
+
self.scaling = config.query_pre_attn_scalar**-0.5
|
345 |
+
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
|
346 |
+
self.attn_logit_softcapping = config.attn_logit_softcapping
|
347 |
+
if self.hidden_size % self.num_heads != 0:
|
348 |
+
raise ValueError(
|
349 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
350 |
+
f" and `num_heads`: {self.num_heads})."
|
351 |
+
)
|
352 |
+
|
353 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
354 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
355 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
356 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
357 |
+
self.rotary_emb = Gemma2RotaryEmbedding(
|
358 |
+
self.head_dim,
|
359 |
+
max_position_embeddings=self.max_position_embeddings,
|
360 |
+
base=self.rope_theta,
|
361 |
+
)
|
362 |
+
|
363 |
+
# NOTE: gemma2 do not include _flash_attn_uses_top_left_mask for flash attention
|
364 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
365 |
+
|
366 |
+
def forward(
|
367 |
+
self,
|
368 |
+
hidden_states: torch.Tensor,
|
369 |
+
attention_mask: Optional[torch.Tensor] = None,
|
370 |
+
position_ids: Optional[torch.LongTensor] = None,
|
371 |
+
past_key_value: Optional[Cache] = None,
|
372 |
+
output_attentions: bool = False,
|
373 |
+
use_cache: bool = False,
|
374 |
+
cache_position: Optional[torch.LongTensor] = None,
|
375 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
376 |
+
bsz, q_len, _ = hidden_states.size()
|
377 |
+
|
378 |
+
query_states = self.q_proj(hidden_states)
|
379 |
+
key_states = self.k_proj(hidden_states)
|
380 |
+
value_states = self.v_proj(hidden_states)
|
381 |
+
|
382 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
383 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
384 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
385 |
+
|
386 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
387 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
388 |
+
|
389 |
+
if past_key_value is not None:
|
390 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
391 |
+
cache_kwargs = {
|
392 |
+
"sin": sin,
|
393 |
+
"cos": cos,
|
394 |
+
"sliding_window": self.sliding_window,
|
395 |
+
"cache_position": cache_position,
|
396 |
+
}
|
397 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
398 |
+
|
399 |
+
if output_attentions and self.config._attn_implementation in ["sdpa", "flash_attention_2"]:
|
400 |
+
logger.warning_once("Setting `attention_type` to `flex_attention` because `output_attentions=True`")
|
401 |
+
attention_type = "flex_attention"
|
402 |
+
else:
|
403 |
+
attention_type = self.config._attn_implementation
|
404 |
+
|
405 |
+
attn_output, attn_weights = GEMMA2_ATTENTION_FUNCTION[attention_type](
|
406 |
+
self, query_states, key_states, value_states, attention_mask, output_attentions=output_attentions
|
407 |
+
)
|
408 |
+
|
409 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
410 |
+
attn_output = self.o_proj(attn_output)
|
411 |
+
|
412 |
+
if not output_attentions:
|
413 |
+
attn_weights = None
|
414 |
+
|
415 |
+
return attn_output, attn_weights, past_key_value
|
416 |
+
|
417 |
+
|
418 |
+
class Gemma2FlashAttention2(Gemma2Attention):
|
419 |
+
def __init__(self, config: Gemma2Config, layer_idx: Optional[int] = None):
|
420 |
+
super().__init__(config, layer_idx)
|
421 |
+
self.config._attn_implementation = "flash_attention_2"
|
422 |
+
logger.warning_once(
|
423 |
+
"The `Gemma2FlashAttention2` class is deprecated in favor of simply modifying the `config._attn_implementation`"
|
424 |
+
"attribute of the `GemmaAttention` class! It will be removed in v4.48"
|
425 |
+
)
|
426 |
+
|
427 |
+
|
428 |
+
class Gemma2SdpaAttention(Gemma2Attention):
|
429 |
+
def __init__(self, config: Gemma2Config, layer_idx: Optional[int] = None):
|
430 |
+
super().__init__(config, layer_idx)
|
431 |
+
self.config._attn_implementation = "sdpa"
|
432 |
+
logger.warning_once(
|
433 |
+
"The `Gemma2FlashAttention2` class is deprecated in favor of simply modifying the `config._attn_implementation`"
|
434 |
+
"attribute of the `GemmaAttention` class! It will be removed in v4.48"
|
435 |
+
)
|
436 |
+
|
437 |
+
|
438 |
+
class Gemma2DecoderLayer(nn.Module):
|
439 |
+
def __init__(self, config: Gemma2Config, layer_idx: int):
|
440 |
+
super().__init__()
|
441 |
+
self.hidden_size = config.hidden_size
|
442 |
+
self.config = config
|
443 |
+
self.is_sliding = not bool(layer_idx % 2)
|
444 |
+
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
|
445 |
+
self.mlp = Gemma2MLP(config)
|
446 |
+
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
447 |
+
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
448 |
+
|
449 |
+
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
450 |
+
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
451 |
+
self.sliding_window = config.sliding_window
|
452 |
+
|
453 |
+
def forward(
|
454 |
+
self,
|
455 |
+
hidden_states: torch.Tensor,
|
456 |
+
attention_mask: Optional[torch.Tensor] = None,
|
457 |
+
position_ids: Optional[torch.LongTensor] = None,
|
458 |
+
past_key_value: Optional[Cache] = None,
|
459 |
+
output_attentions: Optional[bool] = False,
|
460 |
+
use_cache: Optional[bool] = False,
|
461 |
+
cache_position: Optional[torch.LongTensor] = None,
|
462 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
463 |
+
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
464 |
+
# Flash-attn is a 2D tensor
|
465 |
+
if self.config._attn_implementation == "flash_attention_2":
|
466 |
+
if past_key_value is not None: # when decoding
|
467 |
+
attention_mask = attention_mask[:, -self.sliding_window :]
|
468 |
+
else:
|
469 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
470 |
+
sliding_window_mask = torch.tril(
|
471 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
472 |
+
)
|
473 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
474 |
+
if attention_mask.shape[-1] <= 1: # when decoding
|
475 |
+
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
|
476 |
+
|
477 |
+
residual = hidden_states
|
478 |
+
|
479 |
+
hidden_states = self.input_layernorm(hidden_states)
|
480 |
+
|
481 |
+
# Self Attention
|
482 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
483 |
+
hidden_states=hidden_states,
|
484 |
+
attention_mask=attention_mask,
|
485 |
+
position_ids=position_ids,
|
486 |
+
past_key_value=past_key_value,
|
487 |
+
output_attentions=output_attentions,
|
488 |
+
use_cache=use_cache,
|
489 |
+
cache_position=cache_position,
|
490 |
+
)
|
491 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
492 |
+
hidden_states = residual + hidden_states
|
493 |
+
|
494 |
+
residual = hidden_states
|
495 |
+
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
496 |
+
hidden_states = self.mlp(hidden_states)
|
497 |
+
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
498 |
+
hidden_states = residual + hidden_states
|
499 |
+
|
500 |
+
outputs = (hidden_states,)
|
501 |
+
|
502 |
+
if output_attentions:
|
503 |
+
outputs += (self_attn_weights,)
|
504 |
+
|
505 |
+
if use_cache:
|
506 |
+
outputs += (present_key_value,)
|
507 |
+
|
508 |
+
return outputs
|
509 |
+
|
510 |
+
|
511 |
+
GEMMA2_START_DOCSTRING = r"""
|
512 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
513 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
514 |
+
etc.)
|
515 |
+
|
516 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
517 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
518 |
+
and behavior.
|
519 |
+
|
520 |
+
Parameters:
|
521 |
+
config ([`Gemma2Config`]):
|
522 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
523 |
+
load the weights associated with the model, only the configuration. Check out the
|
524 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
525 |
+
"""
|
526 |
+
|
527 |
+
|
528 |
+
@add_start_docstrings(
|
529 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
530 |
+
GEMMA2_START_DOCSTRING,
|
531 |
+
)
|
532 |
+
class Gemma2PreTrainedModel(PreTrainedModel):
|
533 |
+
config_class = Gemma2Config
|
534 |
+
base_model_prefix = "model"
|
535 |
+
supports_gradient_checkpointing = True
|
536 |
+
_no_split_modules = ["Gemma2DecoderLayer"]
|
537 |
+
_skip_keys_device_placement = ["past_key_values"]
|
538 |
+
_supports_flash_attn_2 = True
|
539 |
+
_supports_sdpa = True
|
540 |
+
_supports_cache_class = True
|
541 |
+
_supports_quantized_cache = False
|
542 |
+
_supports_static_cache = True
|
543 |
+
|
544 |
+
def _init_weights(self, module):
|
545 |
+
std = self.config.initializer_range
|
546 |
+
if isinstance(module, nn.Linear):
|
547 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
548 |
+
if module.bias is not None:
|
549 |
+
module.bias.data.zero_()
|
550 |
+
elif isinstance(module, nn.Embedding):
|
551 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
552 |
+
if module.padding_idx is not None:
|
553 |
+
module.weight.data[module.padding_idx].zero_()
|
554 |
+
|
555 |
+
@classmethod
|
556 |
+
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False):
|
557 |
+
"""
|
558 |
+
Overloads `PreTrainedModel._check_and_enable_sdpa` so as to DISABLE torch SDPA by default on Gemma2 models.
|
559 |
+
SDPA reduces the model performance on Gemma2 because of the logits softcapping.
|
560 |
+
"""
|
561 |
+
config = super()._check_and_enable_sdpa(config, hard_check_only=hard_check_only)
|
562 |
+
|
563 |
+
# if using the default path -> swap sdpa by eager
|
564 |
+
if not hard_check_only and config._attn_implementation == "sdpa":
|
565 |
+
config._attn_implementation = "eager"
|
566 |
+
|
567 |
+
return config
|
568 |
+
|
569 |
+
|
570 |
+
GEMMA2_INPUTS_DOCSTRING = r"""
|
571 |
+
Args:
|
572 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
573 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
574 |
+
it.
|
575 |
+
|
576 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
577 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
578 |
+
|
579 |
+
[What are input IDs?](../glossary#input-ids)
|
580 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
581 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
582 |
+
|
583 |
+
- 1 for tokens that are **not masked**,
|
584 |
+
- 0 for tokens that are **masked**.
|
585 |
+
|
586 |
+
[What are attention masks?](../glossary#attention-mask)
|
587 |
+
|
588 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
589 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
590 |
+
|
591 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
592 |
+
`past_key_values`).
|
593 |
+
|
594 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
595 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
596 |
+
information on the default strategy.
|
597 |
+
|
598 |
+
- 1 indicates the head is **not masked**,
|
599 |
+
- 0 indicates the head is **masked**.
|
600 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
601 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
602 |
+
config.n_positions - 1]`.
|
603 |
+
|
604 |
+
[What are position IDs?](../glossary#position-ids)
|
605 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
606 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
607 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
608 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
609 |
+
|
610 |
+
Two formats are allowed:
|
611 |
+
- a [`~cache_utils.Cache`] instance, see our
|
612 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
613 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
614 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
615 |
+
cache format.
|
616 |
+
|
617 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
618 |
+
legacy cache format will be returned.
|
619 |
+
|
620 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
621 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
622 |
+
of shape `(batch_size, sequence_length)`.
|
623 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
624 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
625 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
626 |
+
model's internal embedding lookup matrix.
|
627 |
+
use_cache (`bool`, *optional*):
|
628 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
629 |
+
`past_key_values`).
|
630 |
+
output_attentions (`bool`, *optional*):
|
631 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
632 |
+
tensors for more detail.
|
633 |
+
output_hidden_states (`bool`, *optional*):
|
634 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
635 |
+
more detail.
|
636 |
+
return_dict (`bool`, *optional*):
|
637 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
638 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
639 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
640 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
641 |
+
the complete sequence length.
|
642 |
+
"""
|
643 |
+
|
644 |
+
|
645 |
+
@add_start_docstrings(
|
646 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
647 |
+
GEMMA2_START_DOCSTRING,
|
648 |
+
)
|
649 |
+
class Gemma2Model(Gemma2PreTrainedModel):
|
650 |
+
"""
|
651 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
|
652 |
+
|
653 |
+
Args:
|
654 |
+
config: Gemma2Config
|
655 |
+
"""
|
656 |
+
|
657 |
+
def __init__(self, config: Gemma2Config):
|
658 |
+
super().__init__(config)
|
659 |
+
self.padding_idx = config.pad_token_id
|
660 |
+
self.vocab_size = config.vocab_size
|
661 |
+
|
662 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
663 |
+
self.layers = nn.ModuleList(
|
664 |
+
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
665 |
+
)
|
666 |
+
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
667 |
+
|
668 |
+
self.gradient_checkpointing = False
|
669 |
+
if getattr(config, "pretraining_tp", 1) != 1:
|
670 |
+
logger.warn("`pretraining_tp` is deprecated, please use `model.tensor_parallel` instead.")
|
671 |
+
|
672 |
+
# Initialize weights and apply final processing
|
673 |
+
self.post_init()
|
674 |
+
|
675 |
+
def get_input_embeddings(self):
|
676 |
+
return self.embed_tokens
|
677 |
+
|
678 |
+
def set_input_embeddings(self, value):
|
679 |
+
self.embed_tokens = value
|
680 |
+
|
681 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
682 |
+
def forward(
|
683 |
+
self,
|
684 |
+
input_ids: torch.LongTensor = None,
|
685 |
+
attention_mask: Optional[torch.Tensor] = None,
|
686 |
+
position_ids: Optional[torch.LongTensor] = None,
|
687 |
+
past_key_values: Optional[HybridCache] = None,
|
688 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
689 |
+
use_cache: Optional[bool] = None,
|
690 |
+
output_attentions: Optional[bool] = None,
|
691 |
+
output_hidden_states: Optional[bool] = None,
|
692 |
+
return_dict: Optional[bool] = None,
|
693 |
+
cache_position: Optional[torch.LongTensor] = None,
|
694 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
695 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
696 |
+
output_hidden_states = (
|
697 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
698 |
+
)
|
699 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
700 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
701 |
+
|
702 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
703 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
704 |
+
|
705 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
706 |
+
logger.warning_once(
|
707 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
708 |
+
)
|
709 |
+
use_cache = False
|
710 |
+
|
711 |
+
if inputs_embeds is None:
|
712 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
713 |
+
|
714 |
+
if use_cache and past_key_values is None and not self.training:
|
715 |
+
batch_size, seq_len, _ = inputs_embeds.shape
|
716 |
+
past_key_values = HybridCache(
|
717 |
+
self.config,
|
718 |
+
batch_size=batch_size,
|
719 |
+
max_cache_len=seq_len,
|
720 |
+
device=self.device,
|
721 |
+
dtype=inputs_embeds.dtype,
|
722 |
+
)
|
723 |
+
|
724 |
+
if cache_position is None:
|
725 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
726 |
+
cache_position = torch.arange(
|
727 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
728 |
+
)
|
729 |
+
|
730 |
+
if position_ids is None:
|
731 |
+
position_ids = cache_position.unsqueeze(0)
|
732 |
+
|
733 |
+
causal_mask = self._update_causal_mask(
|
734 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
735 |
+
)
|
736 |
+
|
737 |
+
# embed positions
|
738 |
+
hidden_states = inputs_embeds
|
739 |
+
|
740 |
+
# normalized
|
741 |
+
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
742 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
743 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
744 |
+
hidden_states = hidden_states * normalizer
|
745 |
+
|
746 |
+
# decoder layers
|
747 |
+
all_hidden_states = () if output_hidden_states else None
|
748 |
+
all_self_attns = () if output_attentions else None
|
749 |
+
|
750 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
751 |
+
if output_hidden_states:
|
752 |
+
all_hidden_states += (hidden_states,)
|
753 |
+
|
754 |
+
if self.gradient_checkpointing and self.training:
|
755 |
+
layer_outputs = self._gradient_checkpointing_func(
|
756 |
+
decoder_layer.__call__,
|
757 |
+
hidden_states,
|
758 |
+
causal_mask,
|
759 |
+
position_ids,
|
760 |
+
past_key_values,
|
761 |
+
output_attentions,
|
762 |
+
use_cache,
|
763 |
+
cache_position,
|
764 |
+
)
|
765 |
+
else:
|
766 |
+
layer_outputs = decoder_layer(
|
767 |
+
hidden_states,
|
768 |
+
attention_mask=causal_mask,
|
769 |
+
position_ids=position_ids,
|
770 |
+
past_key_value=past_key_values,
|
771 |
+
output_attentions=output_attentions,
|
772 |
+
use_cache=use_cache,
|
773 |
+
cache_position=cache_position,
|
774 |
+
)
|
775 |
+
|
776 |
+
hidden_states = layer_outputs[0]
|
777 |
+
|
778 |
+
if output_attentions:
|
779 |
+
all_self_attns += (layer_outputs[1],)
|
780 |
+
|
781 |
+
hidden_states = self.norm(hidden_states)
|
782 |
+
|
783 |
+
if output_hidden_states:
|
784 |
+
all_hidden_states += (hidden_states,)
|
785 |
+
|
786 |
+
next_cache = past_key_values if use_cache else None
|
787 |
+
|
788 |
+
if not return_dict:
|
789 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
790 |
+
return BaseModelOutputWithPast(
|
791 |
+
last_hidden_state=hidden_states,
|
792 |
+
past_key_values=next_cache,
|
793 |
+
hidden_states=all_hidden_states,
|
794 |
+
attentions=all_self_attns,
|
795 |
+
)
|
796 |
+
|
797 |
+
@torch.no_grad()
|
798 |
+
def _update_causal_mask(
|
799 |
+
self,
|
800 |
+
attention_mask: torch.Tensor,
|
801 |
+
input_tensor: torch.Tensor,
|
802 |
+
cache_position: torch.Tensor,
|
803 |
+
past_key_values: HybridCache,
|
804 |
+
output_attentions: bool,
|
805 |
+
):
|
806 |
+
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
|
807 |
+
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
808 |
+
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
809 |
+
# as it doesn't cause dynamic control issues.
|
810 |
+
if self.config._attn_implementation == "flash_attention_2":
|
811 |
+
return attention_mask
|
812 |
+
|
813 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
814 |
+
sequence_length = input_tensor.shape[1]
|
815 |
+
if isinstance(past_key_values, HybridCache):
|
816 |
+
target_length = past_key_values.get_max_cache_shape()
|
817 |
+
else:
|
818 |
+
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
819 |
+
|
820 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
821 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
822 |
+
attention_mask,
|
823 |
+
sequence_length=sequence_length,
|
824 |
+
target_length=target_length,
|
825 |
+
dtype=dtype,
|
826 |
+
device=device,
|
827 |
+
cache_position=cache_position,
|
828 |
+
batch_size=input_tensor.shape[0],
|
829 |
+
)
|
830 |
+
return causal_mask
|
831 |
+
|
832 |
+
@staticmethod
|
833 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
834 |
+
attention_mask: torch.Tensor,
|
835 |
+
sequence_length: int,
|
836 |
+
target_length: int,
|
837 |
+
dtype: torch.dtype,
|
838 |
+
device: torch.device,
|
839 |
+
cache_position: torch.Tensor,
|
840 |
+
batch_size: int,
|
841 |
+
**kwargs,
|
842 |
+
):
|
843 |
+
"""
|
844 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
845 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
846 |
+
|
847 |
+
Args:
|
848 |
+
attention_mask (`torch.Tensor`):
|
849 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
850 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
851 |
+
sequence_length (`int`):
|
852 |
+
The sequence length being processed.
|
853 |
+
target_length (`int`):
|
854 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
855 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
856 |
+
dtype (`torch.dtype`):
|
857 |
+
The dtype to use for the 4D attention mask.
|
858 |
+
device (`torch.device`):
|
859 |
+
The device to plcae the 4D attention mask on.
|
860 |
+
cache_position (`torch.Tensor`):
|
861 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
862 |
+
batch_size (`torch.Tensor`):
|
863 |
+
Batch size.
|
864 |
+
"""
|
865 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
866 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
867 |
+
causal_mask = attention_mask
|
868 |
+
else:
|
869 |
+
min_dtype = torch.finfo(dtype).min
|
870 |
+
causal_mask = torch.full(
|
871 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
872 |
+
)
|
873 |
+
if sequence_length != 1:
|
874 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
875 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
876 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
877 |
+
if attention_mask is not None:
|
878 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
879 |
+
mask_length = attention_mask.shape[-1]
|
880 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
881 |
+
padding_mask = padding_mask == 0
|
882 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
883 |
+
padding_mask, min_dtype
|
884 |
+
)
|
885 |
+
|
886 |
+
return causal_mask
|
887 |
+
|
888 |
+
|
889 |
+
class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin):
|
890 |
+
_tied_weights_keys = ["lm_head.weight"]
|
891 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
892 |
+
|
893 |
+
def __init__(self, config):
|
894 |
+
super().__init__(config)
|
895 |
+
self.model = Gemma2Model(config)
|
896 |
+
self.vocab_size = config.vocab_size
|
897 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
898 |
+
|
899 |
+
# Initialize weights and apply final processing
|
900 |
+
self.post_init()
|
901 |
+
|
902 |
+
def get_input_embeddings(self):
|
903 |
+
return self.model.embed_tokens
|
904 |
+
|
905 |
+
def set_input_embeddings(self, value):
|
906 |
+
self.model.embed_tokens = value
|
907 |
+
|
908 |
+
def get_output_embeddings(self):
|
909 |
+
return self.lm_head
|
910 |
+
|
911 |
+
def set_output_embeddings(self, new_embeddings):
|
912 |
+
self.lm_head = new_embeddings
|
913 |
+
|
914 |
+
def set_decoder(self, decoder):
|
915 |
+
self.model = decoder
|
916 |
+
|
917 |
+
def get_decoder(self):
|
918 |
+
return self.model
|
919 |
+
|
920 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
921 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
922 |
+
def forward(
|
923 |
+
self,
|
924 |
+
input_ids: torch.LongTensor = None,
|
925 |
+
attention_mask: Optional[torch.Tensor] = None,
|
926 |
+
position_ids: Optional[torch.LongTensor] = None,
|
927 |
+
past_key_values: Optional[HybridCache] = None,
|
928 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
929 |
+
labels: Optional[torch.LongTensor] = None,
|
930 |
+
use_cache: Optional[bool] = None,
|
931 |
+
output_attentions: Optional[bool] = None,
|
932 |
+
output_hidden_states: Optional[bool] = None,
|
933 |
+
return_dict: Optional[bool] = None,
|
934 |
+
cache_position: Optional[torch.LongTensor] = None,
|
935 |
+
num_logits_to_keep: int = 0,
|
936 |
+
**loss_kwargs,
|
937 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
938 |
+
r"""
|
939 |
+
Args:
|
940 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
941 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
942 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
943 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
944 |
+
|
945 |
+
num_logits_to_keep (`int`, *optional*):
|
946 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
947 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
948 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
949 |
+
|
950 |
+
Returns:
|
951 |
+
|
952 |
+
Example:
|
953 |
+
|
954 |
+
```python
|
955 |
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
956 |
+
|
957 |
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
|
958 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
959 |
+
|
960 |
+
>>> prompt = "What is your favorite condiment?"
|
961 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
962 |
+
|
963 |
+
>>> # Generate
|
964 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
965 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
966 |
+
"What is your favorite condiment?"
|
967 |
+
```"""
|
968 |
+
|
969 |
+
if self.training and self.config._attn_implementation != "eager":
|
970 |
+
logger.warning_once(
|
971 |
+
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
|
972 |
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
973 |
+
)
|
974 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
975 |
+
output_hidden_states = (
|
976 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
977 |
+
)
|
978 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
979 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
980 |
+
outputs = self.model(
|
981 |
+
input_ids=input_ids,
|
982 |
+
attention_mask=attention_mask,
|
983 |
+
position_ids=position_ids,
|
984 |
+
past_key_values=past_key_values,
|
985 |
+
inputs_embeds=inputs_embeds,
|
986 |
+
use_cache=use_cache,
|
987 |
+
output_attentions=output_attentions,
|
988 |
+
output_hidden_states=output_hidden_states,
|
989 |
+
return_dict=return_dict,
|
990 |
+
cache_position=cache_position,
|
991 |
+
)
|
992 |
+
|
993 |
+
hidden_states = outputs[0]
|
994 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
995 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
996 |
+
if self.config.final_logit_softcapping is not None:
|
997 |
+
logits = logits / self.config.final_logit_softcapping
|
998 |
+
logits = torch.tanh(logits)
|
999 |
+
logits = logits * self.config.final_logit_softcapping
|
1000 |
+
|
1001 |
+
loss = None
|
1002 |
+
if labels is not None:
|
1003 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
1004 |
+
|
1005 |
+
if not return_dict:
|
1006 |
+
output = (logits,) + outputs[1:]
|
1007 |
+
return (loss,) + output if loss is not None else output
|
1008 |
+
|
1009 |
+
return CausalLMOutputWithPast(
|
1010 |
+
loss=loss,
|
1011 |
+
logits=logits,
|
1012 |
+
past_key_values=outputs.past_key_values,
|
1013 |
+
hidden_states=outputs.hidden_states,
|
1014 |
+
attentions=outputs.attentions,
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
def prepare_inputs_for_generation(
|
1018 |
+
self,
|
1019 |
+
input_ids,
|
1020 |
+
past_key_values=None,
|
1021 |
+
attention_mask=None,
|
1022 |
+
inputs_embeds=None,
|
1023 |
+
cache_position=None,
|
1024 |
+
position_ids=None,
|
1025 |
+
use_cache=True,
|
1026 |
+
num_logits_to_keep=None,
|
1027 |
+
**kwargs,
|
1028 |
+
):
|
1029 |
+
# Overwritten: has a special cache type, `HybridCache`
|
1030 |
+
|
1031 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1032 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1033 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1034 |
+
if past_key_values is not None:
|
1035 |
+
if inputs_embeds is not None: # Exception 1
|
1036 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1037 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1038 |
+
input_ids = input_ids[:, cache_position]
|
1039 |
+
if attention_mask is not None and position_ids is None:
|
1040 |
+
# create position_ids on the fly for batch generation
|
1041 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1042 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1043 |
+
if past_key_values:
|
1044 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1045 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
1046 |
+
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
|
1047 |
+
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
|
1048 |
+
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
|
1049 |
+
# which retriggers a capture.
|
1050 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1051 |
+
|
1052 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1053 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1054 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1055 |
+
else:
|
1056 |
+
# The clone here is for the same reason as for `position_ids`.
|
1057 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1058 |
+
|
1059 |
+
if (
|
1060 |
+
isinstance(past_key_values, HybridCache)
|
1061 |
+
and attention_mask.ndim == 2
|
1062 |
+
and not self.config._attn_implementation == "flash_attention_2"
|
1063 |
+
):
|
1064 |
+
if model_inputs["inputs_embeds"] is not None:
|
1065 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1066 |
+
device = model_inputs["inputs_embeds"].device
|
1067 |
+
else:
|
1068 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1069 |
+
device = model_inputs["input_ids"].device
|
1070 |
+
|
1071 |
+
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
|
1072 |
+
attention_mask,
|
1073 |
+
sequence_length=sequence_length,
|
1074 |
+
target_length=past_key_values.get_max_cache_shape(),
|
1075 |
+
dtype=self.lm_head.weight.dtype,
|
1076 |
+
device=device,
|
1077 |
+
cache_position=cache_position,
|
1078 |
+
batch_size=batch_size,
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
if num_logits_to_keep is not None:
|
1082 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
1083 |
+
|
1084 |
+
model_inputs.update(
|
1085 |
+
{
|
1086 |
+
"position_ids": position_ids,
|
1087 |
+
"cache_position": cache_position,
|
1088 |
+
"past_key_values": past_key_values,
|
1089 |
+
"use_cache": use_cache,
|
1090 |
+
"attention_mask": attention_mask,
|
1091 |
+
}
|
1092 |
+
)
|
1093 |
+
return model_inputs
|
1094 |
+
|
1095 |
+
|
1096 |
+
@add_start_docstrings(
|
1097 |
+
"""
|
1098 |
+
The Gemma2 Model transformer with a sequence classification head on top (linear layer).
|
1099 |
+
|
1100 |
+
[`Gemma2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1101 |
+
(e.g. GPT-2) do.
|
1102 |
+
|
1103 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1104 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1105 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1106 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1107 |
+
each row of the batch).
|
1108 |
+
""",
|
1109 |
+
GEMMA2_START_DOCSTRING,
|
1110 |
+
)
|
1111 |
+
class Gemma2ForSequenceClassification(Gemma2PreTrainedModel):
|
1112 |
+
def __init__(self, config):
|
1113 |
+
super().__init__(config)
|
1114 |
+
self.num_labels = config.num_labels
|
1115 |
+
self.model = Gemma2Model(config)
|
1116 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1117 |
+
|
1118 |
+
# Initialize weights and apply final processing
|
1119 |
+
self.post_init()
|
1120 |
+
|
1121 |
+
def get_input_embeddings(self):
|
1122 |
+
return self.model.embed_tokens
|
1123 |
+
|
1124 |
+
def set_input_embeddings(self, value):
|
1125 |
+
self.model.embed_tokens = value
|
1126 |
+
|
1127 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
1128 |
+
def forward(
|
1129 |
+
self,
|
1130 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1131 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1132 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1133 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1134 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1135 |
+
labels: Optional[torch.LongTensor] = None,
|
1136 |
+
use_cache: Optional[bool] = None,
|
1137 |
+
output_attentions: Optional[bool] = None,
|
1138 |
+
output_hidden_states: Optional[bool] = None,
|
1139 |
+
return_dict: Optional[bool] = None,
|
1140 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1141 |
+
r"""
|
1142 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1143 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1144 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1145 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1146 |
+
"""
|
1147 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1148 |
+
|
1149 |
+
transformer_outputs = self.model(
|
1150 |
+
input_ids,
|
1151 |
+
attention_mask=attention_mask,
|
1152 |
+
position_ids=position_ids,
|
1153 |
+
past_key_values=past_key_values,
|
1154 |
+
inputs_embeds=inputs_embeds,
|
1155 |
+
use_cache=use_cache,
|
1156 |
+
output_attentions=output_attentions,
|
1157 |
+
output_hidden_states=output_hidden_states,
|
1158 |
+
return_dict=return_dict,
|
1159 |
+
)
|
1160 |
+
hidden_states = transformer_outputs[0]
|
1161 |
+
logits = self.score(hidden_states)
|
1162 |
+
|
1163 |
+
if input_ids is not None:
|
1164 |
+
batch_size = input_ids.shape[0]
|
1165 |
+
else:
|
1166 |
+
batch_size = inputs_embeds.shape[0]
|
1167 |
+
|
1168 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1169 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1170 |
+
if self.config.pad_token_id is None:
|
1171 |
+
sequence_lengths = -1
|
1172 |
+
else:
|
1173 |
+
if input_ids is not None:
|
1174 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1175 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1176 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1177 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1178 |
+
else:
|
1179 |
+
sequence_lengths = -1
|
1180 |
+
|
1181 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1182 |
+
|
1183 |
+
loss = None
|
1184 |
+
if labels is not None:
|
1185 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
1186 |
+
|
1187 |
+
if not return_dict:
|
1188 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1189 |
+
return ((loss,) + output) if loss is not None else output
|
1190 |
+
|
1191 |
+
return SequenceClassifierOutputWithPast(
|
1192 |
+
loss=loss,
|
1193 |
+
logits=pooled_logits,
|
1194 |
+
past_key_values=transformer_outputs.past_key_values,
|
1195 |
+
hidden_states=transformer_outputs.hidden_states,
|
1196 |
+
attentions=transformer_outputs.attentions,
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
|
1200 |
+
@add_start_docstrings(
|
1201 |
+
"""
|
1202 |
+
The Gemma2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1203 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1204 |
+
""",
|
1205 |
+
GEMMA2_START_DOCSTRING,
|
1206 |
+
)
|
1207 |
+
class Gemma2ForTokenClassification(Gemma2PreTrainedModel):
|
1208 |
+
def __init__(self, config):
|
1209 |
+
super().__init__(config)
|
1210 |
+
self.num_labels = config.num_labels
|
1211 |
+
self.model = Gemma2Model(config)
|
1212 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1213 |
+
classifier_dropout = config.classifier_dropout
|
1214 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1215 |
+
classifier_dropout = config.hidden_dropout
|
1216 |
+
else:
|
1217 |
+
classifier_dropout = 0.1
|
1218 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1219 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1220 |
+
|
1221 |
+
# Initialize weights and apply final processing
|
1222 |
+
self.post_init()
|
1223 |
+
|
1224 |
+
def get_input_embeddings(self):
|
1225 |
+
return self.model.embed_tokens
|
1226 |
+
|
1227 |
+
def set_input_embeddings(self, value):
|
1228 |
+
self.model.embed_tokens = value
|
1229 |
+
|
1230 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
1231 |
+
@add_code_sample_docstrings(
|
1232 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1233 |
+
output_type=TokenClassifierOutput,
|
1234 |
+
config_class=_CONFIG_FOR_DOC,
|
1235 |
+
)
|
1236 |
+
def forward(
|
1237 |
+
self,
|
1238 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1239 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1240 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1241 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1242 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1243 |
+
labels: Optional[torch.LongTensor] = None,
|
1244 |
+
use_cache: Optional[bool] = None,
|
1245 |
+
output_attentions: Optional[bool] = None,
|
1246 |
+
output_hidden_states: Optional[bool] = None,
|
1247 |
+
return_dict: Optional[bool] = None,
|
1248 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1249 |
+
r"""
|
1250 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1251 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1252 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1253 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1254 |
+
"""
|
1255 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1256 |
+
|
1257 |
+
outputs = self.model(
|
1258 |
+
input_ids,
|
1259 |
+
attention_mask=attention_mask,
|
1260 |
+
position_ids=position_ids,
|
1261 |
+
past_key_values=past_key_values,
|
1262 |
+
inputs_embeds=inputs_embeds,
|
1263 |
+
use_cache=use_cache,
|
1264 |
+
output_attentions=output_attentions,
|
1265 |
+
output_hidden_states=output_hidden_states,
|
1266 |
+
return_dict=return_dict,
|
1267 |
+
)
|
1268 |
+
sequence_output = outputs[0]
|
1269 |
+
sequence_output = self.dropout(sequence_output)
|
1270 |
+
logits = self.score(sequence_output)
|
1271 |
+
|
1272 |
+
loss = None
|
1273 |
+
if labels is not None:
|
1274 |
+
loss = self.loss_function(logits, labels, self.config)
|
1275 |
+
|
1276 |
+
if not return_dict:
|
1277 |
+
output = (logits,) + outputs[2:]
|
1278 |
+
return ((loss,) + output) if loss is not None else output
|
1279 |
+
|
1280 |
+
return TokenClassifierOutput(
|
1281 |
+
loss=loss,
|
1282 |
+
logits=logits,
|
1283 |
+
hidden_states=outputs.hidden_states,
|
1284 |
+
attentions=outputs.attentions,
|
1285 |
+
)
|
modeling_spatialvla.py
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
|
3 |
+
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
|
4 |
+
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
|
5 |
+
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
6 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
7 |
+
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
|
8 |
+
# coding=utf-8
|
9 |
+
|
10 |
+
"""PyTorch PaliGemmamodel."""
|
11 |
+
|
12 |
+
from dataclasses import dataclass
|
13 |
+
from typing import List, Optional, Tuple, Union
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils.checkpoint
|
17 |
+
from torch import nn
|
18 |
+
from torch.linalg import inv
|
19 |
+
import torchvision.transforms.functional as F
|
20 |
+
|
21 |
+
import os
|
22 |
+
from transformers.cache_utils import Cache, HybridCache, StaticCache
|
23 |
+
from transformers.generation import GenerationMixin
|
24 |
+
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
|
25 |
+
from transformers.utils import (
|
26 |
+
ModelOutput,
|
27 |
+
add_start_docstrings,
|
28 |
+
add_start_docstrings_to_model_forward,
|
29 |
+
is_flash_attn_2_available,
|
30 |
+
logging,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from .configuration_spatialvla import SpatialVLAConfig
|
34 |
+
from .modeling_ego3d import Ego3DPositionEmbeddingMLP, process_zoe
|
35 |
+
from .modeling_gemma2 import Gemma2ForCausalLM
|
36 |
+
|
37 |
+
if is_flash_attn_2_available():
|
38 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
39 |
+
|
40 |
+
from transformers import AutoModel, AutoModelForCausalLM, ZoeDepthForDepthEstimation
|
41 |
+
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__)
|
44 |
+
|
45 |
+
_CONFIG_FOR_DOC = "PaliGemmaConfig"
|
46 |
+
|
47 |
+
# constant
|
48 |
+
SIGLIP_MEAN, SIGLIP_STD = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
|
49 |
+
|
50 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
|
51 |
+
# But Paligemma has no causal mask on prefix
|
52 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
53 |
+
attention_mask: torch.Tensor,
|
54 |
+
sequence_length: int,
|
55 |
+
target_length: int,
|
56 |
+
dtype: torch.dtype,
|
57 |
+
device: torch.device,
|
58 |
+
min_dtype: float,
|
59 |
+
cache_position: torch.Tensor,
|
60 |
+
batch_size: int,
|
61 |
+
is_training: bool = False,
|
62 |
+
token_type_ids: torch.Tensor = None,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
"""
|
66 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
67 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
attention_mask (`torch.Tensor`):
|
71 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
72 |
+
sequence_length (`int`):
|
73 |
+
The sequence length being processed.
|
74 |
+
target_length (`int`):
|
75 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
76 |
+
dtype (`torch.dtype`):
|
77 |
+
The dtype to use for the 4D attention mask.
|
78 |
+
device (`torch.device`):
|
79 |
+
The device to plcae the 4D attention mask on.
|
80 |
+
min_dtype (`float`):
|
81 |
+
The minimum value representable with the dtype `dtype`.
|
82 |
+
cache_position (`torch.Tensor`):
|
83 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
84 |
+
batch_size (`torch.Tensor`):
|
85 |
+
Batch size.
|
86 |
+
is_training (`bool`):
|
87 |
+
Whether the model is in training mode or in inference. The condition is checked by presence/absence of `token_type_ids/labels`
|
88 |
+
"""
|
89 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
90 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
91 |
+
causal_mask = attention_mask
|
92 |
+
else:
|
93 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
94 |
+
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
|
95 |
+
if sequence_length != 1:
|
96 |
+
if is_training:
|
97 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
98 |
+
else:
|
99 |
+
causal_mask[:, :sequence_length] = 0.0
|
100 |
+
|
101 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
102 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
103 |
+
if attention_mask is not None:
|
104 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
105 |
+
mask_length = attention_mask.shape[-1]
|
106 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
|
107 |
+
padding_mask = padding_mask == 0
|
108 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
109 |
+
padding_mask, min_dtype
|
110 |
+
)
|
111 |
+
# we are training thus we need to create a full mask on the image + prefix but causal on suffix
|
112 |
+
if is_training:
|
113 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
114 |
+
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
|
115 |
+
)
|
116 |
+
return causal_mask
|
117 |
+
|
118 |
+
|
119 |
+
@dataclass
|
120 |
+
class SpatialVLACausalLMOutputWithPast(ModelOutput):
|
121 |
+
"""
|
122 |
+
Base class for PaliGemmacausal language model (or autoregressive) outputs.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
126 |
+
Language modeling loss (for next-token prediction).
|
127 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
|
128 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
129 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
130 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
131 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
132 |
+
|
133 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
134 |
+
`past_key_values` input) to speed up sequential decoding.
|
135 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
136 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
137 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
138 |
+
|
139 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
140 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
141 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
142 |
+
sequence_length)`.
|
143 |
+
|
144 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
145 |
+
heads.
|
146 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
147 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
148 |
+
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
|
149 |
+
"""
|
150 |
+
|
151 |
+
loss: Optional[torch.FloatTensor] = None
|
152 |
+
logits: torch.FloatTensor = None
|
153 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
|
154 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
155 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
156 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
157 |
+
|
158 |
+
|
159 |
+
class SpatialVLAMultiModalProjector(nn.Module):
|
160 |
+
def __init__(self, config: SpatialVLAConfig):
|
161 |
+
super().__init__()
|
162 |
+
self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)
|
163 |
+
|
164 |
+
def forward(self, image_features):
|
165 |
+
hidden_states = self.linear(image_features)
|
166 |
+
|
167 |
+
return hidden_states
|
168 |
+
|
169 |
+
|
170 |
+
PALIGEMMA_START_DOCSTRING = r"""
|
171 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
172 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
173 |
+
etc.)
|
174 |
+
|
175 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
176 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
177 |
+
and behavior.
|
178 |
+
|
179 |
+
Parameters:
|
180 |
+
config ([`PaliGemmaConfig`] or [`PaliGemmaVisionConfig`]):
|
181 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
182 |
+
load the weights associated with the model, only the configuration. Check out the
|
183 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
184 |
+
"""
|
185 |
+
|
186 |
+
|
187 |
+
@add_start_docstrings(
|
188 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
189 |
+
PALIGEMMA_START_DOCSTRING,
|
190 |
+
)
|
191 |
+
class SpatialVLAPreTrainedModel(PreTrainedModel):
|
192 |
+
config_class = SpatialVLAConfig
|
193 |
+
base_model_prefix = "model"
|
194 |
+
supports_gradient_checkpointing = True
|
195 |
+
_no_split_modules = ["SpatialVLAMultiModalProjector", "ZoeDepthForDepthEstimation", "Ego3DPositionEmbeddingMLP"]
|
196 |
+
_skip_keys_device_placement = "past_key_values"
|
197 |
+
_supports_cache_class = True
|
198 |
+
_supports_quantized_cache = True
|
199 |
+
_supports_static_cache = True
|
200 |
+
_supports_cache_class = True
|
201 |
+
_supports_flash_attn_2 = True
|
202 |
+
_supports_sdpa = True
|
203 |
+
|
204 |
+
def _init_weights(self, module):
|
205 |
+
# important: this ported version of PaliGemmaisn't meant for training from scratch - only
|
206 |
+
# inference and fine-tuning
|
207 |
+
std = (
|
208 |
+
self.config.initializer_range
|
209 |
+
if hasattr(self.config, "initializer_range")
|
210 |
+
else self.config.text_config.initializer_range
|
211 |
+
)
|
212 |
+
|
213 |
+
if hasattr(module, "class_embedding"):
|
214 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
215 |
+
|
216 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
217 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
218 |
+
if module.bias is not None:
|
219 |
+
module.bias.data.zero_()
|
220 |
+
elif isinstance(module, nn.Embedding):
|
221 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
222 |
+
if module.padding_idx is not None:
|
223 |
+
module.weight.data[module.padding_idx].zero_()
|
224 |
+
|
225 |
+
|
226 |
+
PALIGEMMA_INPUTS_DOCSTRING = r"""
|
227 |
+
Args:
|
228 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
229 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
230 |
+
it.
|
231 |
+
|
232 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
233 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
234 |
+
|
235 |
+
[What are input IDs?](../glossary#input-ids)
|
236 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
237 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
238 |
+
[`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`PaliGemmaProcessor`] uses
|
239 |
+
[`SiglipImageProcessor`] for processing images).
|
240 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
241 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
242 |
+
|
243 |
+
- 1 for tokens that are **not masked**,
|
244 |
+
- 0 for tokens that are **masked**.
|
245 |
+
|
246 |
+
[What are attention masks?](../glossary#attention-mask)
|
247 |
+
|
248 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
249 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
250 |
+
|
251 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
252 |
+
`past_key_values`).
|
253 |
+
|
254 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
255 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
256 |
+
information on the default strategy.
|
257 |
+
|
258 |
+
- 1 indicates the head is **not masked**,
|
259 |
+
- 0 indicates the head is **masked**.
|
260 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
261 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
262 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
263 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
264 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
265 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
266 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
267 |
+
|
268 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
269 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
270 |
+
|
271 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
272 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
273 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
274 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
275 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
276 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
277 |
+
model's internal embedding lookup matrix.
|
278 |
+
use_cache (`bool`, *optional*):
|
279 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
280 |
+
`past_key_values`).
|
281 |
+
output_attentions (`bool`, *optional*):
|
282 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
283 |
+
tensors for more detail.
|
284 |
+
output_hidden_states (`bool`, *optional*):
|
285 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
286 |
+
more detail.
|
287 |
+
return_dict (`bool`, *optional*):
|
288 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
289 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
290 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
291 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
292 |
+
the complete sequence length.
|
293 |
+
"""
|
294 |
+
|
295 |
+
|
296 |
+
@add_start_docstrings(
|
297 |
+
"""The PALIGEMMA model which consists of a vision backbone and a language model.""",
|
298 |
+
PALIGEMMA_START_DOCSTRING,
|
299 |
+
)
|
300 |
+
class SpatialVLAForConditionalGeneration(SpatialVLAPreTrainedModel, GenerationMixin):
|
301 |
+
def __init__(self, config: SpatialVLAConfig, vision_model=None, vision_zoe_model=None, projector_model=None, language_model=None):
|
302 |
+
super().__init__(config)
|
303 |
+
# vision model
|
304 |
+
self.vision_tower = vision_model or AutoModel.from_config(config=config.vision_config)
|
305 |
+
# projector
|
306 |
+
self.multi_modal_projector = projector_model or SpatialVLAMultiModalProjector(config)
|
307 |
+
# language model
|
308 |
+
self.vocab_size = config.text_config.vocab_size
|
309 |
+
if language_model is None:
|
310 |
+
language_model = Gemma2ForCausalLM(config=config.text_config) if config.text_config.model_type == "gemma2" else AutoModelForCausalLM.from_config(config=config.text_config)
|
311 |
+
# set tile key
|
312 |
+
if language_model._tied_weights_keys is not None:
|
313 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
314 |
+
self.language_model = language_model
|
315 |
+
|
316 |
+
if config.use_vision_zoe:
|
317 |
+
# zoe model
|
318 |
+
self.vision_zoe_model = vision_zoe_model or ZoeDepthForDepthEstimation(config.vision_zoe_config)
|
319 |
+
self.position_embedding_3d = Ego3DPositionEmbeddingMLP(
|
320 |
+
config.ego3d_patch_reso**2 * 3, num_pos_feats=config.vision_config.hidden_size, n_freqs=config.n_freqs
|
321 |
+
)
|
322 |
+
# register buffer
|
323 |
+
patch_size, reso, image_size = config.vision_config.patch_size, config.ego3d_patch_reso, config.vision_config.image_size
|
324 |
+
y, x = torch.meshgrid(torch.arange(0, image_size, patch_size // reso), torch.arange(0, image_size, patch_size // reso), indexing="ij") # (h//sp w//sp)
|
325 |
+
y, x = y + patch_size / reso / 2, x + patch_size / reso / 2
|
326 |
+
uv_h = torch.stack([x, y, torch.ones_like(x)], dim=0).reshape(3, -1) # (3 hw)
|
327 |
+
self.register_buffer("uv_h", uv_h, persistent=False)
|
328 |
+
|
329 |
+
# NOTE: add shared addtional spatial token embeddings for <ACTION> <IMG>
|
330 |
+
if config.use_spatial_token:
|
331 |
+
self.spatial_embed_tokens = nn.Embedding(self.config.spatial_token_num, config.text_config.hidden_size)
|
332 |
+
else:
|
333 |
+
self.spatial_embed_tokens = None
|
334 |
+
|
335 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
336 |
+
# self.post_init() # BUG: cause from_pretrained failed!
|
337 |
+
# self.position_embedding_3d._reset_parameters()
|
338 |
+
|
339 |
+
|
340 |
+
def backproject_patch(self, K: torch.Tensor, depth: torch.Tensor, patch_size=14, reso=2) -> torch.Tensor:
|
341 |
+
"""
|
342 |
+
Backproject depth map to 3D points in camera coordinate.
|
343 |
+
Args:
|
344 |
+
K: camera intrinsic matrix (b 3 3)
|
345 |
+
depth: depth map (b 1 h w)
|
346 |
+
pixel_offset: offset to the pixel coordinate
|
347 |
+
"""
|
348 |
+
# __import__("ipdb").set_trace()
|
349 |
+
b, c, h, w = depth.shape
|
350 |
+
hp, wp = h // patch_size, w // patch_size
|
351 |
+
sub_hp = sub_wp = reso
|
352 |
+
patch_depth = torch.nn.functional.interpolate(depth, size=(hp * reso, wp * reso), mode="area").reshape(b, c, -1)
|
353 |
+
|
354 |
+
# import torchvision; torchvision.utils.save_image(zoe_pixel_values[0], "zoe_image.png")
|
355 |
+
p_cam = (inv(K.float()) @ self.uv_h.float()) * patch_depth # (b 3 3) @ (3 hw) -> (b 3 hw) * (b 1 hw) -> (b 3 hw)
|
356 |
+
patch_p_cam = p_cam.reshape(b, 3, hp, sub_hp, wp, sub_wp).permute(0, 2, 4, 3, 5, 1).reshape(b, hp * wp, -1)
|
357 |
+
return patch_p_cam
|
358 |
+
|
359 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings with Llava->PaliGemma
|
360 |
+
def get_input_embeddings(self):
|
361 |
+
return self.language_model.get_input_embeddings()
|
362 |
+
|
363 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings with Llava->PaliGemma
|
364 |
+
def set_input_embeddings(self, value):
|
365 |
+
self.language_model.set_input_embeddings(value)
|
366 |
+
|
367 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings with Llava->PaliGemma
|
368 |
+
def get_output_embeddings(self):
|
369 |
+
return self.language_model.get_output_embeddings()
|
370 |
+
|
371 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings with Llava->PaliGemma
|
372 |
+
def set_output_embeddings(self, new_embeddings):
|
373 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
374 |
+
|
375 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder with Llava->PaliGemma
|
376 |
+
def set_decoder(self, decoder):
|
377 |
+
self.language_model.set_decoder(decoder)
|
378 |
+
|
379 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder with Llava->PaliGemma
|
380 |
+
def get_decoder(self):
|
381 |
+
return self.language_model.get_decoder()
|
382 |
+
|
383 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights with Llava->PaliGemma
|
384 |
+
def tie_weights(self):
|
385 |
+
return self.language_model.tie_weights()
|
386 |
+
|
387 |
+
def resize_token_embeddings(
|
388 |
+
self,
|
389 |
+
new_num_tokens: Optional[int] = None,
|
390 |
+
pad_to_multiple_of: Optional[int] = None,
|
391 |
+
mean_resizing: bool = True,
|
392 |
+
) -> nn.Embedding:
|
393 |
+
# TODO: is_deepspeed_zero3_enabled gather
|
394 |
+
print(f"resize token embeddings from {self.language_model.get_output_embeddings().weight.shape} to (*,{new_num_tokens})")
|
395 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
|
396 |
+
|
397 |
+
# update base model and current model config
|
398 |
+
vocab_size = model_embeds.weight.shape[0]
|
399 |
+
self.config.text_config.vocab_size = self.vocab_size = self.config._vocab_size = vocab_size
|
400 |
+
self.tie_weights()
|
401 |
+
return model_embeds
|
402 |
+
|
403 |
+
def _update_causal_mask(
|
404 |
+
self,
|
405 |
+
attention_mask,
|
406 |
+
token_type_ids,
|
407 |
+
past_key_values,
|
408 |
+
cache_position,
|
409 |
+
input_ids=None,
|
410 |
+
inputs_embeds=None,
|
411 |
+
is_training: bool = False,
|
412 |
+
):
|
413 |
+
if self.config.text_config._attn_implementation == "flash_attention_2":
|
414 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
415 |
+
return attention_mask
|
416 |
+
return None
|
417 |
+
|
418 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
419 |
+
min_dtype = torch.finfo(self.dtype).min
|
420 |
+
inputs_lead_dim = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]
|
421 |
+
sequence_length = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
422 |
+
if using_static_cache:
|
423 |
+
target_length = past_key_values.get_max_cache_shape()
|
424 |
+
elif isinstance(past_key_values, HybridCache):
|
425 |
+
target_length = past_key_values.get_max_cache_shape()
|
426 |
+
else:
|
427 |
+
target_length = (
|
428 |
+
attention_mask.shape[-1]
|
429 |
+
if isinstance(attention_mask, torch.Tensor)
|
430 |
+
else cache_position[0] + sequence_length + 1
|
431 |
+
)
|
432 |
+
|
433 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
434 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
435 |
+
return attention_mask
|
436 |
+
|
437 |
+
causal_mask = torch.full(
|
438 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
|
439 |
+
)
|
440 |
+
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
|
441 |
+
if sequence_length != 1:
|
442 |
+
if is_training:
|
443 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
444 |
+
else:
|
445 |
+
causal_mask[:, :sequence_length] = 0.0
|
446 |
+
|
447 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
448 |
+
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
|
449 |
+
if attention_mask is not None:
|
450 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
451 |
+
mask_length = attention_mask.shape[-1]
|
452 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
|
453 |
+
padding_mask = padding_mask == 0
|
454 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
455 |
+
padding_mask, min_dtype
|
456 |
+
)
|
457 |
+
# we are training thus we need to create a full mask on the image + prefix but causal on suffix
|
458 |
+
if is_training:
|
459 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
460 |
+
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
|
461 |
+
)
|
462 |
+
return causal_mask
|
463 |
+
|
464 |
+
def get_image_features(self, pixel_values: torch.FloatTensor, intrinsic: torch.FloatTensor):
|
465 |
+
"""
|
466 |
+
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
467 |
+
|
468 |
+
Args:
|
469 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
470 |
+
The tensors corresponding to the input images.
|
471 |
+
Returns:
|
472 |
+
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
473 |
+
"""
|
474 |
+
# mintrinsic = intrinsic.reshape(-1, 3, 3)
|
475 |
+
# siglip vision tower
|
476 |
+
siglip_pixel_values = F.normalize(pixel_values, mean=SIGLIP_MEAN, std=SIGLIP_STD)
|
477 |
+
image_outputs = self.vision_tower(siglip_pixel_values)
|
478 |
+
|
479 |
+
# ego3d position encoding
|
480 |
+
if self.config.use_vision_zoe:
|
481 |
+
zoe_pixel_values, ph, pw = process_zoe(pixel_values, pad_mode="reflect")
|
482 |
+
with torch.no_grad():
|
483 |
+
pvh, pvw = pixel_values.shape[-2:]
|
484 |
+
depth = self.vision_zoe_model(pixel_values=zoe_pixel_values).predicted_depth
|
485 |
+
depth = torch.nn.functional.interpolate(
|
486 |
+
depth.unsqueeze(1),
|
487 |
+
size=(pvh+2*ph, pvw+2*pw),
|
488 |
+
mode="bicubic",
|
489 |
+
align_corners=True,
|
490 |
+
)[..., ph:-ph, pw:-pw]
|
491 |
+
# depth = torch.clamp(depth, 0., 4.0) # NOTE: we find that depth w/o clamp performs better
|
492 |
+
xyz = self.backproject_patch(
|
493 |
+
intrinsic, depth, patch_size=self.config.vision_config.patch_size, reso=self.config.ego3d_patch_reso
|
494 |
+
) # (b, n, 3*4)
|
495 |
+
pos_embed_3d = self.position_embedding_3d(xyz)
|
496 |
+
selected_image_feature = image_outputs.last_hidden_state + pos_embed_3d
|
497 |
+
else:
|
498 |
+
selected_image_feature = image_outputs.last_hidden_state
|
499 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
500 |
+
image_features = image_features / (self.config.text_config.hidden_size**0.5)
|
501 |
+
return image_features
|
502 |
+
|
503 |
+
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
|
504 |
+
@replace_return_docstrings(output_type=SpatialVLACausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
505 |
+
def forward(
|
506 |
+
self,
|
507 |
+
input_ids: torch.LongTensor = None,
|
508 |
+
pixel_values: torch.FloatTensor = None,
|
509 |
+
actions: Optional[torch.FloatTensor] = None,
|
510 |
+
intrinsic: Optional[torch.Tensor] = None,
|
511 |
+
attention_mask: Optional[torch.Tensor] = None,
|
512 |
+
position_ids: Optional[torch.LongTensor] = None,
|
513 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
514 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
515 |
+
cache_position: Optional[torch.LongTensor] = None,
|
516 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
517 |
+
labels: Optional[torch.LongTensor] = None,
|
518 |
+
use_cache: Optional[bool] = None,
|
519 |
+
output_attentions: Optional[bool] = None,
|
520 |
+
output_hidden_states: Optional[bool] = None,
|
521 |
+
return_dict: Optional[bool] = None,
|
522 |
+
num_logits_to_keep: int = 0,
|
523 |
+
) -> Union[Tuple, SpatialVLACausalLMOutputWithPast]:
|
524 |
+
r"""
|
525 |
+
Args:
|
526 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
527 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
528 |
+
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
529 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
530 |
+
|
531 |
+
num_logits_to_keep (`int`, *optional*):
|
532 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
533 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
534 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
535 |
+
|
536 |
+
Returns:
|
537 |
+
|
538 |
+
Example:
|
539 |
+
|
540 |
+
```python
|
541 |
+
>>> from PIL import Image
|
542 |
+
>>> import requests
|
543 |
+
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
544 |
+
|
545 |
+
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
|
546 |
+
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
|
547 |
+
|
548 |
+
>>> prompt = "answer en Where is the cow standing?"
|
549 |
+
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
|
550 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
551 |
+
|
552 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
553 |
+
|
554 |
+
>>> # Generate
|
555 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
556 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
557 |
+
"answer en Where is the cow standing?\nbeach"
|
558 |
+
```"""
|
559 |
+
# print(f"**************************************\n \
|
560 |
+
# input_ids {input_ids} \n \
|
561 |
+
# labels {labels} \n \
|
562 |
+
# token_type_ids {token_type_ids} \n \
|
563 |
+
# attention_mask {attention_mask} \n \
|
564 |
+
# actions {actions} \n \
|
565 |
+
# **************************************"
|
566 |
+
# )
|
567 |
+
# print(f"model.language_model.config._attn_implementation {self.language_model.config._attn_implementation} model.config.vision_config._attn_implementation_internal {self.config.vision_config._attn_implementation_internal} \n \
|
568 |
+
# model.vision_tower.config._attn_implementation {self.vision_tower.config._attn_implementation} model.config.vision_config._attn_implementation_internal {self.config.vision_config._attn_implementation_internal}")
|
569 |
+
# __import__("ipdb").set_trace()
|
570 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
571 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
572 |
+
|
573 |
+
if pixel_values is not None and inputs_embeds is not None:
|
574 |
+
raise ValueError(
|
575 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
576 |
+
)
|
577 |
+
|
578 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
579 |
+
output_hidden_states = (
|
580 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
581 |
+
)
|
582 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
583 |
+
|
584 |
+
is_training = token_type_ids is not None and labels is not None
|
585 |
+
|
586 |
+
if inputs_embeds is None:
|
587 |
+
inputs_embeds = self.get_input_embeddings()(input_ids).clone() ## avoid checkpint grad True
|
588 |
+
|
589 |
+
# NOTE: replace the fixed embeddings with trainable spatial embeddings
|
590 |
+
# BUG: LoRA causes inputs_embeds requires_grad = True
|
591 |
+
# peft: https://github.com/huggingface/peft/blob/ec92cdcc41fe1b141bfe1e0da69b38a7e601cc80/src/peft/peft_model.py#L687
|
592 |
+
# hf: https://github.com/huggingface/transformers/blob/05260a1fc1c8571a2b421ce72b680d5f1bc3e5a4/src/transformers/modeling_utils.py#L2545
|
593 |
+
# lora w/ prompt: https://discuss.huggingface.co/t/combine-between-lora-and-prompt-tunning/65151
|
594 |
+
if self.config.use_spatial_token:
|
595 |
+
spatial_selected = (input_ids >= self.config.action_token_begin_idx) & (input_ids < self.config.action_token_begin_idx + self.config.spatial_token_num)
|
596 |
+
inputs_embeds[spatial_selected] = inputs_embeds[spatial_selected] * 0.0 + self.spatial_embed_tokens(input_ids[spatial_selected] - self.config.action_token_begin_idx)
|
597 |
+
|
598 |
+
if cache_position is None:
|
599 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
600 |
+
cache_position = torch.arange(
|
601 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
602 |
+
)
|
603 |
+
|
604 |
+
if position_ids is None:
|
605 |
+
position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
|
606 |
+
|
607 |
+
# Merge text and images
|
608 |
+
if pixel_values is not None:
|
609 |
+
image_features = self.get_image_features(pixel_values, intrinsic)
|
610 |
+
|
611 |
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
612 |
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
613 |
+
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
614 |
+
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
|
615 |
+
raise ValueError(
|
616 |
+
f"Number of images does not match number of special image tokens in the input text. "
|
617 |
+
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
618 |
+
"tokens from image embeddings."
|
619 |
+
)
|
620 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
621 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
622 |
+
|
623 |
+
# mask out pad-token-ids in labels for BC
|
624 |
+
if labels is not None and self.pad_token_id in labels:
|
625 |
+
logger.warning_once(
|
626 |
+
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ",
|
627 |
+
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
|
628 |
+
)
|
629 |
+
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
|
630 |
+
|
631 |
+
causal_mask = self._update_causal_mask(
|
632 |
+
attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training
|
633 |
+
)
|
634 |
+
outputs = self.language_model(
|
635 |
+
attention_mask=causal_mask,
|
636 |
+
position_ids=position_ids,
|
637 |
+
past_key_values=past_key_values,
|
638 |
+
inputs_embeds=inputs_embeds,
|
639 |
+
use_cache=use_cache,
|
640 |
+
output_attentions=output_attentions,
|
641 |
+
output_hidden_states=output_hidden_states,
|
642 |
+
return_dict=return_dict,
|
643 |
+
cache_position=cache_position,
|
644 |
+
num_logits_to_keep=num_logits_to_keep,
|
645 |
+
)
|
646 |
+
|
647 |
+
logits = outputs.logits
|
648 |
+
loss = None
|
649 |
+
if labels is not None:
|
650 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
651 |
+
logits = logits.float()
|
652 |
+
shift_logits = logits[..., :-1, :]
|
653 |
+
shift_labels = labels[..., 1:]
|
654 |
+
if attention_mask is not None:
|
655 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
656 |
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
657 |
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
658 |
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
659 |
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
660 |
+
else:
|
661 |
+
shift_logits = shift_logits.contiguous()
|
662 |
+
shift_labels = shift_labels.contiguous()
|
663 |
+
# Flatten the tokens
|
664 |
+
loss_fct = nn.CrossEntropyLoss()
|
665 |
+
|
666 |
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
667 |
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
668 |
+
loss = loss_fct(flat_logits, flat_labels)
|
669 |
+
if not return_dict:
|
670 |
+
output = (logits,) + outputs[1:]
|
671 |
+
return (loss,) + output if loss is not None else output
|
672 |
+
|
673 |
+
return SpatialVLACausalLMOutputWithPast(
|
674 |
+
loss=loss,
|
675 |
+
logits=logits,
|
676 |
+
past_key_values=outputs.past_key_values,
|
677 |
+
hidden_states=outputs.hidden_states,
|
678 |
+
attentions=outputs.attentions,
|
679 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
680 |
+
)
|
681 |
+
|
682 |
+
def prepare_inputs_for_generation(
|
683 |
+
self,
|
684 |
+
input_ids,
|
685 |
+
past_key_values=None,
|
686 |
+
inputs_embeds=None,
|
687 |
+
cache_position=None,
|
688 |
+
position_ids=None,
|
689 |
+
pixel_values=None,
|
690 |
+
intrinsic=None,
|
691 |
+
attention_mask=None,
|
692 |
+
token_type_ids=None,
|
693 |
+
use_cache=True,
|
694 |
+
num_logits_to_keep=None,
|
695 |
+
labels=None,
|
696 |
+
**kwargs,
|
697 |
+
):
|
698 |
+
# Overwritten -- custom `position_ids` and `pixel_values` handling
|
699 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
700 |
+
input_ids,
|
701 |
+
past_key_values=past_key_values,
|
702 |
+
inputs_embeds=inputs_embeds,
|
703 |
+
attention_mask=attention_mask,
|
704 |
+
position_ids=position_ids,
|
705 |
+
cache_position=cache_position,
|
706 |
+
use_cache=use_cache,
|
707 |
+
num_logits_to_keep=num_logits_to_keep,
|
708 |
+
token_type_ids=token_type_ids,
|
709 |
+
**kwargs,
|
710 |
+
)
|
711 |
+
|
712 |
+
# position_ids in Paligemma are 1-indexed
|
713 |
+
if model_inputs.get("position_ids") is not None:
|
714 |
+
model_inputs["position_ids"] += 1
|
715 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
716 |
+
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
|
717 |
+
if cache_position[0] == 0:
|
718 |
+
model_inputs["pixel_values"] = pixel_values
|
719 |
+
is_training = token_type_ids is not None and labels is not None
|
720 |
+
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
|
721 |
+
causal_mask = self._update_causal_mask(
|
722 |
+
attention_mask, token_type_ids, past_key_values, cache_position, input_ids, inputs_embeds, is_training
|
723 |
+
)
|
724 |
+
model_inputs["attention_mask"] = causal_mask
|
725 |
+
model_inputs["intrinsic"] = intrinsic
|
726 |
+
return model_inputs
|
727 |
+
|
728 |
+
@torch.no_grad()
|
729 |
+
def predict_action(
|
730 |
+
self,
|
731 |
+
model_inputs,
|
732 |
+
) -> torch.Tensor:
|
733 |
+
model_inputs = model_inputs.to(torch.bfloat16).to(self.device)
|
734 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
735 |
+
generation_outputs = self.generate(**model_inputs, max_new_tokens=256, do_sample=False)
|
736 |
+
return generation_outputs[:,input_len:]
|
737 |
+
|
738 |
+
@classmethod
|
739 |
+
def from_pretrained(
|
740 |
+
cls,
|
741 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
742 |
+
*model_args,
|
743 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
744 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
745 |
+
ignore_mismatched_sizes: bool = False,
|
746 |
+
force_download: bool = False,
|
747 |
+
local_files_only: bool = False,
|
748 |
+
token: Optional[Union[str, bool]] = None,
|
749 |
+
revision: str = "main",
|
750 |
+
use_safetensors: Optional[bool] = None,
|
751 |
+
weights_only: bool = True,
|
752 |
+
**kwargs,
|
753 |
+
):
|
754 |
+
model = super().from_pretrained(
|
755 |
+
pretrained_model_name_or_path,
|
756 |
+
*model_args,
|
757 |
+
config=config,
|
758 |
+
cache_dir=cache_dir,
|
759 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
760 |
+
force_download=force_download,
|
761 |
+
local_files_only=local_files_only,
|
762 |
+
token=token,
|
763 |
+
revision=revision,
|
764 |
+
use_safetensors=use_safetensors,
|
765 |
+
weights_only=weights_only,
|
766 |
+
**kwargs,
|
767 |
+
)
|
768 |
+
# NOTE: tie the weights of the embed_tokens with lm head (donot work if un_tie_weight)
|
769 |
+
# model.language_model.tie_weights()
|
770 |
+
# NOTE: tie the data of spatial_embed_tokens with embed_tokens (BUG: forweight sync issue in training)
|
771 |
+
if model.config.use_spatial_token:
|
772 |
+
model.language_model.model.embed_tokens.weight.data[-model.config.spatial_token_num:] = model.spatial_embed_tokens.weight.data
|
773 |
+
return model
|
preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_spatialvla.SpatialVLAProcessor"
|
4 |
+
},
|
5 |
+
"do_convert_rgb": null,
|
6 |
+
"do_normalize": false,
|
7 |
+
"do_rescale": true,
|
8 |
+
"do_resize": true,
|
9 |
+
"image_mean": [
|
10 |
+
0.5,
|
11 |
+
0.5,
|
12 |
+
0.5
|
13 |
+
],
|
14 |
+
"image_processor_type": "SiglipImageProcessor",
|
15 |
+
"image_seq_length": 256,
|
16 |
+
"image_std": [
|
17 |
+
0.5,
|
18 |
+
0.5,
|
19 |
+
0.5
|
20 |
+
],
|
21 |
+
"processor_class": "SpatialVLAProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"height": 224,
|
26 |
+
"width": 224
|
27 |
+
}
|
28 |
+
}
|
processing_spatialvla.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
|
3 |
+
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
|
4 |
+
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
|
5 |
+
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
6 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
|
7 |
+
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
|
8 |
+
# coding=utf-8
|
9 |
+
|
10 |
+
"""
|
11 |
+
Processor class for PaliGemma.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import logging
|
15 |
+
from typing import List, Optional, Union, Dict
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
from transformers.feature_extraction_utils import BatchFeature
|
20 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
21 |
+
from transformers.processing_utils import (
|
22 |
+
ImagesKwargs,
|
23 |
+
ProcessingKwargs,
|
24 |
+
ProcessorMixin,
|
25 |
+
TextKwargs,
|
26 |
+
Unpack,
|
27 |
+
_validate_images_text_input_order,
|
28 |
+
)
|
29 |
+
from transformers.tokenization_utils_base import (
|
30 |
+
AddedToken,
|
31 |
+
PreTokenizedInput,
|
32 |
+
TextInput,
|
33 |
+
)
|
34 |
+
from transformers.utils import logging
|
35 |
+
from .action_tokenizer import SphericalCoordinateActionTokenizer
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
IMAGE_TOKEN = "<image>"
|
40 |
+
EXTRA_TOKENS = [f"<loc{i:0>4}>" for i in range(1024)] + [f"<seg{i:0>3}>" for i in range(128)]
|
41 |
+
|
42 |
+
|
43 |
+
class PaliGemmaTextKwargs(TextKwargs):
|
44 |
+
suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
|
45 |
+
|
46 |
+
|
47 |
+
class PaliGemmaImagesKwargs(ImagesKwargs):
|
48 |
+
do_convert_rgb: Optional[bool]
|
49 |
+
|
50 |
+
|
51 |
+
class PaliGemmaProcessorKwargs(ProcessingKwargs, total=False):
|
52 |
+
text_kwargs: PaliGemmaTextKwargs
|
53 |
+
images_kwargs: PaliGemmaImagesKwargs
|
54 |
+
_defaults = {
|
55 |
+
"text_kwargs": {
|
56 |
+
"padding": False,
|
57 |
+
},
|
58 |
+
"images_kwargs": {
|
59 |
+
"data_format": "channels_first",
|
60 |
+
},
|
61 |
+
}
|
62 |
+
|
63 |
+
|
64 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
65 |
+
def is_url(val) -> bool:
|
66 |
+
return isinstance(val, str) and val.startswith("http")
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
70 |
+
def is_image_or_image_url(elem):
|
71 |
+
return is_url(elem) or is_valid_image(elem)
|
72 |
+
|
73 |
+
|
74 |
+
def _is_str_or_image(elem):
|
75 |
+
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
76 |
+
|
77 |
+
|
78 |
+
def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images):
|
79 |
+
"""
|
80 |
+
Builds a string from the input prompt and image tokens.
|
81 |
+
For example, for the call:
|
82 |
+
build_string_from_input(
|
83 |
+
prompt="Prefix str"
|
84 |
+
bos_token="<s>",
|
85 |
+
image_seq_len=3,
|
86 |
+
image_token="<im>",
|
87 |
+
)
|
88 |
+
The output will be:
|
89 |
+
"<im><im><im><s>Initial str"
|
90 |
+
Args:
|
91 |
+
prompt (`List[Union[str, ImageInput]]`): The input prompt.
|
92 |
+
bos_token (`str`): The beginning of sentence token.
|
93 |
+
image_seq_len (`int`): The length of the image sequence.
|
94 |
+
image_token (`str`): The image token.
|
95 |
+
num_images (`int`): Number of images in the prompt.
|
96 |
+
"""
|
97 |
+
return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n"
|
98 |
+
|
99 |
+
|
100 |
+
# Copied from transformers.models.llava_next.image_processing_llava_next.make_batched_images
|
101 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
102 |
+
"""
|
103 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
107 |
+
The input image.
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
list: A list of images.
|
111 |
+
"""
|
112 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
113 |
+
return [img for img_list in images for img in img_list]
|
114 |
+
|
115 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
116 |
+
return images
|
117 |
+
|
118 |
+
elif is_valid_image(images):
|
119 |
+
return [images]
|
120 |
+
|
121 |
+
raise ValueError(f"Could not make batched video from {images}")
|
122 |
+
|
123 |
+
|
124 |
+
class SpatialVLAProcessor(ProcessorMixin):
|
125 |
+
r"""
|
126 |
+
Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor.
|
127 |
+
|
128 |
+
[`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
129 |
+
[`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
image_processor ([`SiglipImageProcessor`], *optional*):
|
133 |
+
The image processor is a required input.
|
134 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
135 |
+
The tokenizer is a required input.
|
136 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
137 |
+
in a chat into a tokenizable string.
|
138 |
+
"""
|
139 |
+
|
140 |
+
attributes = ["image_processor", "tokenizer"]
|
141 |
+
valid_kwargs = ["chat_template"]
|
142 |
+
image_processor_class = "SiglipImageProcessor"
|
143 |
+
tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
image_processor=None,
|
148 |
+
tokenizer=None,
|
149 |
+
chat_template=None,
|
150 |
+
statistics: Optional[dict] = None,
|
151 |
+
bin_policy=None,
|
152 |
+
intrinsic_config=None,
|
153 |
+
action_config=None,
|
154 |
+
num_obs_steps=1,
|
155 |
+
obs_delta=1,
|
156 |
+
action_chunk_size=1,
|
157 |
+
min_sigma=0.0,
|
158 |
+
**kwargs,
|
159 |
+
):
|
160 |
+
if image_processor is None:
|
161 |
+
raise ValueError("You need to specify an `image_processor`.")
|
162 |
+
if tokenizer is None:
|
163 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
164 |
+
if not hasattr(image_processor, "image_seq_length"):
|
165 |
+
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
166 |
+
|
167 |
+
self.image_seq_length = image_processor.image_seq_length
|
168 |
+
|
169 |
+
if not hasattr(tokenizer, "image_token"):
|
170 |
+
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
|
171 |
+
tokens_to_add = {"additional_special_tokens": [image_token]}
|
172 |
+
tokenizer.add_special_tokens(tokens_to_add)
|
173 |
+
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
174 |
+
else:
|
175 |
+
self.image_token_id = tokenizer.image_token_id
|
176 |
+
|
177 |
+
tokenizer.add_tokens(EXTRA_TOKENS)
|
178 |
+
tokenizer.add_bos_token = False
|
179 |
+
tokenizer.add_eos_token = False
|
180 |
+
|
181 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
182 |
+
|
183 |
+
# action tokenizer
|
184 |
+
self.statistics = statistics if statistics else {}
|
185 |
+
self.bin_policy = bin_policy
|
186 |
+
self.min_sigma = min_sigma
|
187 |
+
self.intrinsic_config = intrinsic_config
|
188 |
+
self.action_config = action_config
|
189 |
+
self.num_obs_steps = num_obs_steps
|
190 |
+
self.obs_delta = obs_delta
|
191 |
+
self.action_chunk_size = action_chunk_size
|
192 |
+
self.dataset_intrinsics = {}
|
193 |
+
height, width = image_processor.size["height"], image_processor.size["width"]
|
194 |
+
|
195 |
+
for k, v in intrinsic_config.items():
|
196 |
+
K = torch.tensor(v["intrinsic"]).float()
|
197 |
+
h, w = v["height"], v["width"]
|
198 |
+
K[0, 0] *= width / w
|
199 |
+
K[1, 1] *= height / h
|
200 |
+
K[0, 2] *= width / w
|
201 |
+
K[1, 2] *= height / h
|
202 |
+
self.dataset_intrinsics[k] = K
|
203 |
+
print(f"scale intrinsic of {k} from {v['intrinsic']} to {K} ...")
|
204 |
+
|
205 |
+
self.action_tokenizer = SphericalCoordinateActionTokenizer(
|
206 |
+
tokenizer=tokenizer, num_bins=action_config["num_bins"],
|
207 |
+
bin_policy=bin_policy, use_spherical=action_config["use_spherical"],
|
208 |
+
min_sigma=min_sigma,
|
209 |
+
)
|
210 |
+
|
211 |
+
def __call__(
|
212 |
+
self,
|
213 |
+
images: ImageInput = None,
|
214 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
215 |
+
audio=None,
|
216 |
+
videos=None,
|
217 |
+
unnorm_key: Optional[str] = None,
|
218 |
+
suffix_actions: Optional[np.array] = None, # (t e)
|
219 |
+
**kwargs: Unpack[PaliGemmaProcessorKwargs],
|
220 |
+
) -> BatchFeature:
|
221 |
+
"""
|
222 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
223 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
224 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
225 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
226 |
+
of the above two methods for more information.
|
227 |
+
|
228 |
+
The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to
|
229 |
+
the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for
|
230 |
+
the prefix and the suffix. For instance,
|
231 |
+
```python
|
232 |
+
image = PIL_cow_image
|
233 |
+
prompt = "answer en Where is the cow standing?"
|
234 |
+
suffix = "on the beach"
|
235 |
+
inputs = processor(text=prompt, images=image, suffix=suffix)
|
236 |
+
```
|
237 |
+
Here `inputs` will contain the `input_ids` and `token_type_ids` that follow
|
238 |
+
```python
|
239 |
+
inputs["input_ids"][:, 256:]
|
240 |
+
# tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]])
|
241 |
+
inputs["token_type_ids"][:, 256:]
|
242 |
+
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
|
243 |
+
```
|
244 |
+
Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type.
|
245 |
+
|
246 |
+
|
247 |
+
Args:
|
248 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
249 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
250 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
251 |
+
number of channels, H and W are image height and width.
|
252 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
253 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
254 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
255 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
256 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
257 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
258 |
+
|
259 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
260 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
261 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
262 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
263 |
+
suffix (`str`, `List[str]`, `List[List[str]]`):
|
264 |
+
The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md
|
265 |
+
for more information. If your prompt is "<image> What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench".
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
269 |
+
|
270 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
271 |
+
is provided, the `input_ids` will also contain the suffix input ids.
|
272 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
273 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
274 |
+
`None`).
|
275 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
276 |
+
- **labels** -- Labels compatible with training if `suffix` is not None
|
277 |
+
"""
|
278 |
+
# check if images and text inputs are reversed for BC
|
279 |
+
images, text = _validate_images_text_input_order(images, text)
|
280 |
+
|
281 |
+
output_kwargs = self._merge_kwargs(
|
282 |
+
PaliGemmaProcessorKwargs,
|
283 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
284 |
+
**kwargs,
|
285 |
+
)
|
286 |
+
if suffix_actions is not None:
|
287 |
+
action_tokens = self.action_tokenizer(suffix_actions) # (n,3)
|
288 |
+
suffix="".join(action_tokens.flatten())
|
289 |
+
else:
|
290 |
+
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
|
291 |
+
|
292 |
+
return_token_type_ids = True if suffix is not None else False
|
293 |
+
|
294 |
+
if images is None:
|
295 |
+
raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.")
|
296 |
+
if text is None:
|
297 |
+
logger.warning_once(
|
298 |
+
"You are using PaliGemma without a text prefix. It will perform as a picture-captioning model."
|
299 |
+
)
|
300 |
+
text = ""
|
301 |
+
|
302 |
+
if _is_str_or_image(text):
|
303 |
+
text = [text]
|
304 |
+
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
305 |
+
pass
|
306 |
+
|
307 |
+
if text is not None and images is not None:
|
308 |
+
if not any(IMAGE_TOKEN in sample for sample in text):
|
309 |
+
# logger.warning(
|
310 |
+
# "You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special "
|
311 |
+
# "image tokens in the text, as many tokens as there are images per each text. It is recommended to "
|
312 |
+
# "add `<image>` tokens in the very beginning of your text. For this call, we will infer how many images "
|
313 |
+
# "each text has and add special tokens."
|
314 |
+
# )
|
315 |
+
if isinstance(text, List) and isinstance(images, List):
|
316 |
+
if len(images) != len(text):
|
317 |
+
raise ValueError(
|
318 |
+
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images."
|
319 |
+
)
|
320 |
+
|
321 |
+
# make a nested list of lists to be able to iterate over the images and text below
|
322 |
+
if is_valid_image(images):
|
323 |
+
images = [[images]]
|
324 |
+
elif isinstance(images, list) and is_valid_image(images[0]):
|
325 |
+
images = [[image] for image in images]
|
326 |
+
elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
|
327 |
+
raise ValueError("images must be an image, list of images or list of list of images")
|
328 |
+
|
329 |
+
if suffix is not None and _is_str_or_image(suffix):
|
330 |
+
suffix = [suffix]
|
331 |
+
if suffix is not None:
|
332 |
+
suffix = [sfx + self.tokenizer.eos_token for sfx in suffix]
|
333 |
+
|
334 |
+
input_strings = [
|
335 |
+
build_string_from_input(
|
336 |
+
prompt=prompt,
|
337 |
+
bos_token=self.tokenizer.bos_token,
|
338 |
+
image_seq_len=self.image_seq_length,
|
339 |
+
image_token=IMAGE_TOKEN,
|
340 |
+
num_images=len(image_list) if isinstance(image_list, list) else 1,
|
341 |
+
)
|
342 |
+
for prompt, image_list in zip(text, images)
|
343 |
+
]
|
344 |
+
images = make_batched_images(images)
|
345 |
+
else:
|
346 |
+
expanded_samples = []
|
347 |
+
for sample in text:
|
348 |
+
expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length)
|
349 |
+
bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN)
|
350 |
+
bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0
|
351 |
+
expanded_sample = (
|
352 |
+
expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:]
|
353 |
+
)
|
354 |
+
expanded_samples.append(expanded_sample)
|
355 |
+
input_strings = [f"{sample}\n" for sample in expanded_samples]
|
356 |
+
pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
|
357 |
+
|
358 |
+
# max_length has to account for the image tokens
|
359 |
+
if output_kwargs["text_kwargs"].get("max_length", None) is not None:
|
360 |
+
output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length
|
361 |
+
|
362 |
+
inputs = self.tokenizer(
|
363 |
+
input_strings,
|
364 |
+
text_pair=suffix,
|
365 |
+
return_token_type_ids=return_token_type_ids,
|
366 |
+
**output_kwargs["text_kwargs"],
|
367 |
+
)
|
368 |
+
|
369 |
+
intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"]
|
370 |
+
return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic}
|
371 |
+
|
372 |
+
if return_token_type_ids:
|
373 |
+
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
374 |
+
return_data.update({"labels": labels})
|
375 |
+
return BatchFeature(data=return_data)
|
376 |
+
|
377 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
|
378 |
+
def batch_decode(self, *args, **kwargs):
|
379 |
+
"""
|
380 |
+
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
381 |
+
refer to the docstring of this method for more information.
|
382 |
+
"""
|
383 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
384 |
+
|
385 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
|
386 |
+
def decode(self, *args, **kwargs):
|
387 |
+
"""
|
388 |
+
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
389 |
+
the docstring of this method for more information.
|
390 |
+
"""
|
391 |
+
return self.tokenizer.decode(*args, **kwargs)
|
392 |
+
|
393 |
+
@property
|
394 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma
|
395 |
+
def model_input_names(self):
|
396 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
397 |
+
image_processor_input_names = self.image_processor.model_input_names
|
398 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
399 |
+
|
400 |
+
def decode_actions(
|
401 |
+
self,
|
402 |
+
generation_outputs: torch.Tensor,
|
403 |
+
unnorm_key: Optional[str] = None,
|
404 |
+
) -> Dict[str, torch.Tensor]:
|
405 |
+
action_token_num = 3 # translation + rotation + gripper
|
406 |
+
predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy()
|
407 |
+
assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!"
|
408 |
+
|
409 |
+
if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size: # pad with zeros
|
410 |
+
print(f"[warning] Padding zero action!")
|
411 |
+
predicted_action_token_ids = np.concatenate(
|
412 |
+
[
|
413 |
+
predicted_action_token_ids,
|
414 |
+
np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong),
|
415 |
+
]
|
416 |
+
)
|
417 |
+
predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num)
|
418 |
+
normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids)
|
419 |
+
|
420 |
+
# Unnormalize actions
|
421 |
+
if unnorm_key is None:
|
422 |
+
print(f"🔥 unnorm_key {unnorm_key} is not in statistics, use next one")
|
423 |
+
unnorm_key = next(self.statistics.keys())
|
424 |
+
action_norm_stats = self.statistics[unnorm_key]["action"]
|
425 |
+
|
426 |
+
action_dim = len(action_norm_stats["q01"])
|
427 |
+
mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool)
|
428 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
429 |
+
|
430 |
+
actions = []
|
431 |
+
for normalized_actions in normalized_action_chunks:
|
432 |
+
action = np.where(
|
433 |
+
mask,
|
434 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
|
435 |
+
normalized_actions,
|
436 |
+
)
|
437 |
+
actions.append(action)
|
438 |
+
actions = np.stack(actions)
|
439 |
+
return {"actions": actions, "action_ids": predicted_action_token_ids}
|
processor_config.json
ADDED
@@ -0,0 +1,3702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"action_chunk_size": 4,
|
3 |
+
"action_config": {
|
4 |
+
"distribution": "gaussian",
|
5 |
+
"num_bins": {
|
6 |
+
"gripper": 2,
|
7 |
+
"rotation": {
|
8 |
+
"pitch_bins": 16,
|
9 |
+
"roll_bins": 16,
|
10 |
+
"yaw_bins": 16
|
11 |
+
},
|
12 |
+
"total": 8194,
|
13 |
+
"translation": {
|
14 |
+
"phi_bins": 32,
|
15 |
+
"r_bins": 8,
|
16 |
+
"theta_bins": 16
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"use_spherical": true
|
20 |
+
},
|
21 |
+
"auto_map": {
|
22 |
+
"AutoProcessor": "processing_spatialvla.SpatialVLAProcessor"
|
23 |
+
},
|
24 |
+
"bin_policy": {
|
25 |
+
"rotation": {
|
26 |
+
"pitch_bins": [
|
27 |
+
-1.0,
|
28 |
+
-0.6785015894338633,
|
29 |
+
-0.516796358161167,
|
30 |
+
-0.3978678314258641,
|
31 |
+
-0.29907867426319246,
|
32 |
+
-0.21158608510441518,
|
33 |
+
-0.13081651669135252,
|
34 |
+
-0.05392877158612959,
|
35 |
+
0.02113881590329744,
|
36 |
+
0.0961313749999302,
|
37 |
+
0.17278161860263358,
|
38 |
+
0.25310821063971767,
|
39 |
+
0.33985580585203445,
|
40 |
+
0.4373796767941653,
|
41 |
+
0.5539451994131283,
|
42 |
+
0.7100308525313351,
|
43 |
+
0.9999999999999999
|
44 |
+
],
|
45 |
+
"roll_bins": [
|
46 |
+
-1.0,
|
47 |
+
-0.7121298287894609,
|
48 |
+
-0.5564581819056097,
|
49 |
+
-0.440071773405789,
|
50 |
+
-0.3426461358467384,
|
51 |
+
-0.25595819395001274,
|
52 |
+
-0.17566893098554964,
|
53 |
+
-0.09904102149491184,
|
54 |
+
-0.024059205927849478,
|
55 |
+
0.05100802578115137,
|
56 |
+
0.12790631705350436,
|
57 |
+
0.20869987492610076,
|
58 |
+
0.2962359118858219,
|
59 |
+
0.3951018734752948,
|
60 |
+
0.5141779624401348,
|
61 |
+
0.6762450862353777,
|
62 |
+
1.0
|
63 |
+
],
|
64 |
+
"yaw_bins": [
|
65 |
+
-1.0,
|
66 |
+
-0.6910047644696934,
|
67 |
+
-0.5313988287371314,
|
68 |
+
-0.4133376866679583,
|
69 |
+
-0.3150057290436059,
|
70 |
+
-0.22777658299365705,
|
71 |
+
-0.14715771012527992,
|
72 |
+
-0.07034330907230311,
|
73 |
+
0.004712965738136004,
|
74 |
+
0.07975252682496348,
|
75 |
+
0.15651401950954372,
|
76 |
+
0.23703420508371892,
|
77 |
+
0.32409736463921823,
|
78 |
+
0.4221473708283458,
|
79 |
+
0.5396818128475004,
|
80 |
+
0.6980345545587262,
|
81 |
+
1.0
|
82 |
+
]
|
83 |
+
},
|
84 |
+
"translation": {
|
85 |
+
"phi_bins": [
|
86 |
+
-3.1415926535897927,
|
87 |
+
-2.5597806593194092,
|
88 |
+
-2.1899702111786126,
|
89 |
+
-1.9071489188814448,
|
90 |
+
-1.6724463283141142,
|
91 |
+
-1.4683467869586326,
|
92 |
+
-1.2853487663890668,
|
93 |
+
-1.1176672338183495,
|
94 |
+
-0.961484031585327,
|
95 |
+
-0.8141204989748655,
|
96 |
+
-0.6736024210639718,
|
97 |
+
-0.5384120746595923,
|
98 |
+
-0.40733740832383114,
|
99 |
+
-0.279375002438531,
|
100 |
+
-0.15366425283265983,
|
101 |
+
-0.029440234757304742,
|
102 |
+
0.0940021938080639,
|
103 |
+
0.2173378027339352,
|
104 |
+
0.34123726674747146,
|
105 |
+
0.46639302836823826,
|
106 |
+
0.5935473848733163,
|
107 |
+
0.7235258808185444,
|
108 |
+
0.857280204661428,
|
109 |
+
0.9959469801163238,
|
110 |
+
1.1409329906705301,
|
111 |
+
1.2940454053271015,
|
112 |
+
1.4577019170652383,
|
113 |
+
1.6352913749303837,
|
114 |
+
1.8318407243899377,
|
115 |
+
2.0553733807372363,
|
116 |
+
2.320069275631962,
|
117 |
+
2.6552436426949604,
|
118 |
+
3.141592653589793
|
119 |
+
],
|
120 |
+
"r_bins": [
|
121 |
+
2.220446049250313e-16,
|
122 |
+
0.19677118231539265,
|
123 |
+
0.3506298590504556,
|
124 |
+
0.4881976731379496,
|
125 |
+
0.621970275186659,
|
126 |
+
0.7620978861167458,
|
127 |
+
0.9228346010157172,
|
128 |
+
1.1393317208802278,
|
129 |
+
1.7320508075688767
|
130 |
+
],
|
131 |
+
"theta_bins": [
|
132 |
+
0.0,
|
133 |
+
0.7067187338585303,
|
134 |
+
0.9814199309359143,
|
135 |
+
1.1752042640550222,
|
136 |
+
1.3331175751173345,
|
137 |
+
1.4713205387280388,
|
138 |
+
1.5977846301055496,
|
139 |
+
1.7172771763957553,
|
140 |
+
1.8331248472067783,
|
141 |
+
1.9480194771467687,
|
142 |
+
2.0644993054216925,
|
143 |
+
2.1853608246107656,
|
144 |
+
2.314189357400805,
|
145 |
+
2.456314355008026,
|
146 |
+
2.621028843347318,
|
147 |
+
2.828352346005421,
|
148 |
+
3.141592653589793
|
149 |
+
]
|
150 |
+
}
|
151 |
+
},
|
152 |
+
"intrinsic_config": {
|
153 |
+
"bridge_orig/1.0.0": {
|
154 |
+
"height": 480,
|
155 |
+
"intrinsic": [
|
156 |
+
[
|
157 |
+
623.588,
|
158 |
+
0,
|
159 |
+
319.501
|
160 |
+
],
|
161 |
+
[
|
162 |
+
0,
|
163 |
+
623.588,
|
164 |
+
239.545
|
165 |
+
],
|
166 |
+
[
|
167 |
+
0,
|
168 |
+
0,
|
169 |
+
1
|
170 |
+
]
|
171 |
+
],
|
172 |
+
"width": 640
|
173 |
+
},
|
174 |
+
"default": {
|
175 |
+
"height": 480,
|
176 |
+
"intrinsic": [
|
177 |
+
[
|
178 |
+
623.588,
|
179 |
+
0,
|
180 |
+
319.501
|
181 |
+
],
|
182 |
+
[
|
183 |
+
0,
|
184 |
+
623.588,
|
185 |
+
239.545
|
186 |
+
],
|
187 |
+
[
|
188 |
+
0,
|
189 |
+
0,
|
190 |
+
1
|
191 |
+
]
|
192 |
+
],
|
193 |
+
"width": 640
|
194 |
+
}
|
195 |
+
},
|
196 |
+
"min_sigma": 0.0,
|
197 |
+
"num_obs_steps": 1,
|
198 |
+
"obs_delta": 1,
|
199 |
+
"processor_class": "SpatialVLAProcessor",
|
200 |
+
"statistics": {
|
201 |
+
"fractal20220817_data/0.1.0": {
|
202 |
+
"action": {
|
203 |
+
"mean": [
|
204 |
+
0.006987507455050945,
|
205 |
+
0.006265853065997362,
|
206 |
+
-0.012625162489712238,
|
207 |
+
0.04333285242319107,
|
208 |
+
-0.005756276659667492,
|
209 |
+
0.0009130403632298112,
|
210 |
+
0.5354204773902893
|
211 |
+
],
|
212 |
+
"std": [
|
213 |
+
0.06921109557151794,
|
214 |
+
0.05970889702439308,
|
215 |
+
0.0735311210155487,
|
216 |
+
0.1561058759689331,
|
217 |
+
0.1316441297531128,
|
218 |
+
0.14593777060508728,
|
219 |
+
0.49711623787879944
|
220 |
+
],
|
221 |
+
"max": [
|
222 |
+
2.9984593391418457,
|
223 |
+
22.09052848815918,
|
224 |
+
2.7507524490356445,
|
225 |
+
1.570636510848999,
|
226 |
+
1.5321086645126343,
|
227 |
+
1.5691522359848022,
|
228 |
+
1.0
|
229 |
+
],
|
230 |
+
"min": [
|
231 |
+
-2.0204520225524902,
|
232 |
+
-5.497899532318115,
|
233 |
+
-2.031663417816162,
|
234 |
+
-1.569917917251587,
|
235 |
+
-1.569892168045044,
|
236 |
+
-1.570419430732727,
|
237 |
+
0.0
|
238 |
+
],
|
239 |
+
"q01": [
|
240 |
+
-0.22453527510166169,
|
241 |
+
-0.14820013284683228,
|
242 |
+
-0.231589707583189,
|
243 |
+
-0.3517994859814644,
|
244 |
+
-0.4193011274933815,
|
245 |
+
-0.43643461108207704,
|
246 |
+
0.0
|
247 |
+
],
|
248 |
+
"q99": [
|
249 |
+
0.17824687153100965,
|
250 |
+
0.14938379630446405,
|
251 |
+
0.21842354819178575,
|
252 |
+
0.5892666035890578,
|
253 |
+
0.35272657424211445,
|
254 |
+
0.44796681255102094,
|
255 |
+
1.0
|
256 |
+
],
|
257 |
+
"mask": [
|
258 |
+
true,
|
259 |
+
true,
|
260 |
+
true,
|
261 |
+
true,
|
262 |
+
true,
|
263 |
+
true,
|
264 |
+
false
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"proprio": {
|
268 |
+
"mean": [
|
269 |
+
0.0,
|
270 |
+
0.0,
|
271 |
+
0.0,
|
272 |
+
0.0,
|
273 |
+
0.0,
|
274 |
+
0.0,
|
275 |
+
0.0
|
276 |
+
],
|
277 |
+
"std": [
|
278 |
+
0.0,
|
279 |
+
0.0,
|
280 |
+
0.0,
|
281 |
+
0.0,
|
282 |
+
0.0,
|
283 |
+
0.0,
|
284 |
+
0.0
|
285 |
+
],
|
286 |
+
"max": [
|
287 |
+
0.0,
|
288 |
+
0.0,
|
289 |
+
0.0,
|
290 |
+
0.0,
|
291 |
+
0.0,
|
292 |
+
0.0,
|
293 |
+
0.0
|
294 |
+
],
|
295 |
+
"min": [
|
296 |
+
0.0,
|
297 |
+
0.0,
|
298 |
+
0.0,
|
299 |
+
0.0,
|
300 |
+
0.0,
|
301 |
+
0.0,
|
302 |
+
0.0
|
303 |
+
],
|
304 |
+
"q01": [
|
305 |
+
0.0,
|
306 |
+
0.0,
|
307 |
+
0.0,
|
308 |
+
0.0,
|
309 |
+
0.0,
|
310 |
+
0.0,
|
311 |
+
0.0
|
312 |
+
],
|
313 |
+
"q99": [
|
314 |
+
0.0,
|
315 |
+
0.0,
|
316 |
+
0.0,
|
317 |
+
0.0,
|
318 |
+
0.0,
|
319 |
+
0.0,
|
320 |
+
0.0
|
321 |
+
]
|
322 |
+
},
|
323 |
+
"num_transitions": 3786400,
|
324 |
+
"num_trajectories": 87212
|
325 |
+
},
|
326 |
+
"kuka/0.1.0": {
|
327 |
+
"action": {
|
328 |
+
"mean": [
|
329 |
+
-0.00046687963185831904,
|
330 |
+
0.00040137648466043174,
|
331 |
+
-0.0012807906605303288,
|
332 |
+
0.0,
|
333 |
+
0.0,
|
334 |
+
-0.037225183099508286,
|
335 |
+
0.4131543040275574
|
336 |
+
],
|
337 |
+
"std": [
|
338 |
+
0.020832739770412445,
|
339 |
+
0.029158642515540123,
|
340 |
+
0.0642285868525505,
|
341 |
+
0.0,
|
342 |
+
0.0,
|
343 |
+
0.14224639534950256,
|
344 |
+
0.4908643662929535
|
345 |
+
],
|
346 |
+
"max": [
|
347 |
+
0.1697135865688324,
|
348 |
+
0.2777623236179352,
|
349 |
+
0.43710532784461975,
|
350 |
+
0.0,
|
351 |
+
0.0,
|
352 |
+
1.9684287309646606,
|
353 |
+
1.0
|
354 |
+
],
|
355 |
+
"min": [
|
356 |
+
-0.159867063164711,
|
357 |
+
-0.2892282009124756,
|
358 |
+
-0.2795473635196686,
|
359 |
+
0.0,
|
360 |
+
0.0,
|
361 |
+
-1.9875637292861938,
|
362 |
+
0.0
|
363 |
+
],
|
364 |
+
"q01": [
|
365 |
+
-0.06619441494345665,
|
366 |
+
-0.08713878810405731,
|
367 |
+
-0.15083016991615295,
|
368 |
+
0.0,
|
369 |
+
0.0,
|
370 |
+
-0.5415697038173676,
|
371 |
+
0.0
|
372 |
+
],
|
373 |
+
"q99": [
|
374 |
+
0.06601839080452929,
|
375 |
+
0.08732476785779003,
|
376 |
+
0.18168179214000715,
|
377 |
+
0.0,
|
378 |
+
0.0,
|
379 |
+
0.2923380345106127,
|
380 |
+
1.0
|
381 |
+
],
|
382 |
+
"mask": [
|
383 |
+
true,
|
384 |
+
true,
|
385 |
+
true,
|
386 |
+
true,
|
387 |
+
true,
|
388 |
+
true,
|
389 |
+
false
|
390 |
+
]
|
391 |
+
},
|
392 |
+
"proprio": {
|
393 |
+
"mean": [
|
394 |
+
0.0,
|
395 |
+
0.0,
|
396 |
+
0.0,
|
397 |
+
0.0,
|
398 |
+
0.0,
|
399 |
+
0.0,
|
400 |
+
0.0
|
401 |
+
],
|
402 |
+
"std": [
|
403 |
+
0.0,
|
404 |
+
0.0,
|
405 |
+
0.0,
|
406 |
+
0.0,
|
407 |
+
0.0,
|
408 |
+
0.0,
|
409 |
+
0.0
|
410 |
+
],
|
411 |
+
"max": [
|
412 |
+
0.0,
|
413 |
+
0.0,
|
414 |
+
0.0,
|
415 |
+
0.0,
|
416 |
+
0.0,
|
417 |
+
0.0,
|
418 |
+
0.0
|
419 |
+
],
|
420 |
+
"min": [
|
421 |
+
0.0,
|
422 |
+
0.0,
|
423 |
+
0.0,
|
424 |
+
0.0,
|
425 |
+
0.0,
|
426 |
+
0.0,
|
427 |
+
0.0
|
428 |
+
],
|
429 |
+
"q01": [
|
430 |
+
0.0,
|
431 |
+
0.0,
|
432 |
+
0.0,
|
433 |
+
0.0,
|
434 |
+
0.0,
|
435 |
+
0.0,
|
436 |
+
0.0
|
437 |
+
],
|
438 |
+
"q99": [
|
439 |
+
0.0,
|
440 |
+
0.0,
|
441 |
+
0.0,
|
442 |
+
0.0,
|
443 |
+
0.0,
|
444 |
+
0.0,
|
445 |
+
0.0
|
446 |
+
]
|
447 |
+
},
|
448 |
+
"num_transitions": 2455879,
|
449 |
+
"num_trajectories": 209880
|
450 |
+
},
|
451 |
+
"bridge_orig/1.0.0": {
|
452 |
+
"action": {
|
453 |
+
"mean": [
|
454 |
+
0.00023341714404523373,
|
455 |
+
0.00013004327774979174,
|
456 |
+
-0.00012762591359205544,
|
457 |
+
-0.0001556579809403047,
|
458 |
+
-0.00040393328526988626,
|
459 |
+
0.00023558337124995887,
|
460 |
+
0.5764582753181458
|
461 |
+
],
|
462 |
+
"std": [
|
463 |
+
0.009765734896063805,
|
464 |
+
0.013689505867660046,
|
465 |
+
0.012667152099311352,
|
466 |
+
0.028534479439258575,
|
467 |
+
0.03063790127635002,
|
468 |
+
0.07691770792007446,
|
469 |
+
0.4973658621311188
|
470 |
+
],
|
471 |
+
"max": [
|
472 |
+
0.41691166162490845,
|
473 |
+
0.25864794850349426,
|
474 |
+
0.21218234300613403,
|
475 |
+
3.122201919555664,
|
476 |
+
1.8618112802505493,
|
477 |
+
6.280478477478027,
|
478 |
+
1.0
|
479 |
+
],
|
480 |
+
"min": [
|
481 |
+
-0.4007510244846344,
|
482 |
+
-0.13874775171279907,
|
483 |
+
-0.22553899884223938,
|
484 |
+
-3.2010786533355713,
|
485 |
+
-1.8618112802505493,
|
486 |
+
-6.279075622558594,
|
487 |
+
0.0
|
488 |
+
],
|
489 |
+
"q01": [
|
490 |
+
-0.02872725307941437,
|
491 |
+
-0.04170349963009357,
|
492 |
+
-0.026093858778476715,
|
493 |
+
-0.08092105075716972,
|
494 |
+
-0.09288699507713317,
|
495 |
+
-0.20718276381492615,
|
496 |
+
0.0
|
497 |
+
],
|
498 |
+
"q99": [
|
499 |
+
0.028309678435325586,
|
500 |
+
0.040855254605412394,
|
501 |
+
0.040161586627364146,
|
502 |
+
0.08192047759890528,
|
503 |
+
0.07792850524187081,
|
504 |
+
0.20382574498653397,
|
505 |
+
1.0
|
506 |
+
],
|
507 |
+
"mask": [
|
508 |
+
true,
|
509 |
+
true,
|
510 |
+
true,
|
511 |
+
true,
|
512 |
+
true,
|
513 |
+
true,
|
514 |
+
false
|
515 |
+
]
|
516 |
+
},
|
517 |
+
"proprio": {
|
518 |
+
"mean": [
|
519 |
+
0.0,
|
520 |
+
0.0,
|
521 |
+
0.0,
|
522 |
+
0.0,
|
523 |
+
0.0,
|
524 |
+
0.0,
|
525 |
+
0.0
|
526 |
+
],
|
527 |
+
"std": [
|
528 |
+
0.0,
|
529 |
+
0.0,
|
530 |
+
0.0,
|
531 |
+
0.0,
|
532 |
+
0.0,
|
533 |
+
0.0,
|
534 |
+
0.0
|
535 |
+
],
|
536 |
+
"max": [
|
537 |
+
0.0,
|
538 |
+
0.0,
|
539 |
+
0.0,
|
540 |
+
0.0,
|
541 |
+
0.0,
|
542 |
+
0.0,
|
543 |
+
0.0
|
544 |
+
],
|
545 |
+
"min": [
|
546 |
+
0.0,
|
547 |
+
0.0,
|
548 |
+
0.0,
|
549 |
+
0.0,
|
550 |
+
0.0,
|
551 |
+
0.0,
|
552 |
+
0.0
|
553 |
+
],
|
554 |
+
"q01": [
|
555 |
+
0.0,
|
556 |
+
0.0,
|
557 |
+
0.0,
|
558 |
+
0.0,
|
559 |
+
0.0,
|
560 |
+
0.0,
|
561 |
+
0.0
|
562 |
+
],
|
563 |
+
"q99": [
|
564 |
+
0.0,
|
565 |
+
0.0,
|
566 |
+
0.0,
|
567 |
+
0.0,
|
568 |
+
0.0,
|
569 |
+
0.0,
|
570 |
+
0.0
|
571 |
+
]
|
572 |
+
},
|
573 |
+
"num_transitions": 2135463,
|
574 |
+
"num_trajectories": 60064
|
575 |
+
},
|
576 |
+
"taco_play/0.1.0": {
|
577 |
+
"action": {
|
578 |
+
"mean": [
|
579 |
+
-0.0038459226489067078,
|
580 |
+
0.009671436622738838,
|
581 |
+
0.01278059184551239,
|
582 |
+
-0.0054037850350141525,
|
583 |
+
-0.009606562554836273,
|
584 |
+
-0.0024807206355035305,
|
585 |
+
0.4263913035392761
|
586 |
+
],
|
587 |
+
"std": [
|
588 |
+
0.23254045844078064,
|
589 |
+
0.3629826307296753,
|
590 |
+
0.2869291603565216,
|
591 |
+
0.261770635843277,
|
592 |
+
0.24388927221298218,
|
593 |
+
0.5216501355171204,
|
594 |
+
0.49469029903411865
|
595 |
+
],
|
596 |
+
"max": [
|
597 |
+
1.4915844202041626,
|
598 |
+
2.1842432022094727,
|
599 |
+
2.6836395263671875,
|
600 |
+
5.035226821899414,
|
601 |
+
2.665864944458008,
|
602 |
+
4.250768661499023,
|
603 |
+
1.0
|
604 |
+
],
|
605 |
+
"min": [
|
606 |
+
-4.242457866668701,
|
607 |
+
-3.192805051803589,
|
608 |
+
-1.3371467590332031,
|
609 |
+
-4.202683448791504,
|
610 |
+
-2.6722638607025146,
|
611 |
+
-3.3467135429382324,
|
612 |
+
0.0
|
613 |
+
],
|
614 |
+
"q01": [
|
615 |
+
-0.7106140398979186,
|
616 |
+
-1.056944659948349,
|
617 |
+
-0.5878450274467468,
|
618 |
+
-0.7682853937149048,
|
619 |
+
-0.7180147767066956,
|
620 |
+
-1.5527938604354858,
|
621 |
+
0.0
|
622 |
+
],
|
623 |
+
"q99": [
|
624 |
+
0.6482916426658629,
|
625 |
+
1.0051310062408447,
|
626 |
+
0.9480248689651489,
|
627 |
+
0.6926478147506714,
|
628 |
+
0.6351067513227462,
|
629 |
+
1.628010264635086,
|
630 |
+
1.0
|
631 |
+
],
|
632 |
+
"mask": [
|
633 |
+
true,
|
634 |
+
true,
|
635 |
+
true,
|
636 |
+
true,
|
637 |
+
true,
|
638 |
+
true,
|
639 |
+
false
|
640 |
+
]
|
641 |
+
},
|
642 |
+
"proprio": {
|
643 |
+
"mean": [
|
644 |
+
0.0,
|
645 |
+
0.0,
|
646 |
+
0.0,
|
647 |
+
0.0,
|
648 |
+
0.0,
|
649 |
+
0.0,
|
650 |
+
0.0
|
651 |
+
],
|
652 |
+
"std": [
|
653 |
+
0.0,
|
654 |
+
0.0,
|
655 |
+
0.0,
|
656 |
+
0.0,
|
657 |
+
0.0,
|
658 |
+
0.0,
|
659 |
+
0.0
|
660 |
+
],
|
661 |
+
"max": [
|
662 |
+
0.0,
|
663 |
+
0.0,
|
664 |
+
0.0,
|
665 |
+
0.0,
|
666 |
+
0.0,
|
667 |
+
0.0,
|
668 |
+
0.0
|
669 |
+
],
|
670 |
+
"min": [
|
671 |
+
0.0,
|
672 |
+
0.0,
|
673 |
+
0.0,
|
674 |
+
0.0,
|
675 |
+
0.0,
|
676 |
+
0.0,
|
677 |
+
0.0
|
678 |
+
],
|
679 |
+
"q01": [
|
680 |
+
0.0,
|
681 |
+
0.0,
|
682 |
+
0.0,
|
683 |
+
0.0,
|
684 |
+
0.0,
|
685 |
+
0.0,
|
686 |
+
0.0
|
687 |
+
],
|
688 |
+
"q99": [
|
689 |
+
0.0,
|
690 |
+
0.0,
|
691 |
+
0.0,
|
692 |
+
0.0,
|
693 |
+
0.0,
|
694 |
+
0.0,
|
695 |
+
0.0
|
696 |
+
]
|
697 |
+
},
|
698 |
+
"num_transitions": 237798,
|
699 |
+
"num_trajectories": 3603
|
700 |
+
},
|
701 |
+
"jaco_play/0.1.0": {
|
702 |
+
"action": {
|
703 |
+
"mean": [
|
704 |
+
0.0009658387862145901,
|
705 |
+
-0.005800850689411163,
|
706 |
+
-0.003950685728341341,
|
707 |
+
0.0,
|
708 |
+
0.0,
|
709 |
+
0.0,
|
710 |
+
0.34934908151626587
|
711 |
+
],
|
712 |
+
"std": [
|
713 |
+
0.12234985828399658,
|
714 |
+
0.09678783267736435,
|
715 |
+
0.1115543395280838,
|
716 |
+
0.0,
|
717 |
+
0.0,
|
718 |
+
0.0,
|
719 |
+
0.47682321071624756
|
720 |
+
],
|
721 |
+
"max": [
|
722 |
+
0.20000000298023224,
|
723 |
+
0.20000000298023224,
|
724 |
+
0.20000000298023224,
|
725 |
+
0.0,
|
726 |
+
0.0,
|
727 |
+
0.0,
|
728 |
+
1.0
|
729 |
+
],
|
730 |
+
"min": [
|
731 |
+
-0.20000000298023224,
|
732 |
+
-0.20000000298023224,
|
733 |
+
-0.20000000298023224,
|
734 |
+
0.0,
|
735 |
+
0.0,
|
736 |
+
0.0,
|
737 |
+
0.0
|
738 |
+
],
|
739 |
+
"q01": [
|
740 |
+
-0.20000000298023224,
|
741 |
+
-0.20000000298023224,
|
742 |
+
-0.20000000298023224,
|
743 |
+
0.0,
|
744 |
+
0.0,
|
745 |
+
0.0,
|
746 |
+
0.0
|
747 |
+
],
|
748 |
+
"q99": [
|
749 |
+
0.20000000298023224,
|
750 |
+
0.20000000298023224,
|
751 |
+
0.20000000298023224,
|
752 |
+
0.0,
|
753 |
+
0.0,
|
754 |
+
0.0,
|
755 |
+
1.0
|
756 |
+
],
|
757 |
+
"mask": [
|
758 |
+
true,
|
759 |
+
true,
|
760 |
+
true,
|
761 |
+
true,
|
762 |
+
true,
|
763 |
+
true,
|
764 |
+
false
|
765 |
+
]
|
766 |
+
},
|
767 |
+
"proprio": {
|
768 |
+
"mean": [
|
769 |
+
0.0,
|
770 |
+
0.0,
|
771 |
+
0.0,
|
772 |
+
0.0,
|
773 |
+
0.0,
|
774 |
+
0.0,
|
775 |
+
0.0
|
776 |
+
],
|
777 |
+
"std": [
|
778 |
+
0.0,
|
779 |
+
0.0,
|
780 |
+
0.0,
|
781 |
+
0.0,
|
782 |
+
0.0,
|
783 |
+
0.0,
|
784 |
+
0.0
|
785 |
+
],
|
786 |
+
"max": [
|
787 |
+
0.0,
|
788 |
+
0.0,
|
789 |
+
0.0,
|
790 |
+
0.0,
|
791 |
+
0.0,
|
792 |
+
0.0,
|
793 |
+
0.0
|
794 |
+
],
|
795 |
+
"min": [
|
796 |
+
0.0,
|
797 |
+
0.0,
|
798 |
+
0.0,
|
799 |
+
0.0,
|
800 |
+
0.0,
|
801 |
+
0.0,
|
802 |
+
0.0
|
803 |
+
],
|
804 |
+
"q01": [
|
805 |
+
0.0,
|
806 |
+
0.0,
|
807 |
+
0.0,
|
808 |
+
0.0,
|
809 |
+
0.0,
|
810 |
+
0.0,
|
811 |
+
0.0
|
812 |
+
],
|
813 |
+
"q99": [
|
814 |
+
0.0,
|
815 |
+
0.0,
|
816 |
+
0.0,
|
817 |
+
0.0,
|
818 |
+
0.0,
|
819 |
+
0.0,
|
820 |
+
0.0
|
821 |
+
]
|
822 |
+
},
|
823 |
+
"num_transitions": 77965,
|
824 |
+
"num_trajectories": 1085
|
825 |
+
},
|
826 |
+
"berkeley_cable_routing/0.1.0": {
|
827 |
+
"action": {
|
828 |
+
"mean": [
|
829 |
+
-0.07139858603477478,
|
830 |
+
0.023608991876244545,
|
831 |
+
0.10241956263780594,
|
832 |
+
0.0,
|
833 |
+
0.0,
|
834 |
+
0.04967105761170387,
|
835 |
+
0.0
|
836 |
+
],
|
837 |
+
"std": [
|
838 |
+
0.18155010044574738,
|
839 |
+
0.18109896779060364,
|
840 |
+
0.21220752596855164,
|
841 |
+
0.0,
|
842 |
+
0.0,
|
843 |
+
0.3475516438484192,
|
844 |
+
0.0
|
845 |
+
],
|
846 |
+
"max": [
|
847 |
+
0.9633283019065857,
|
848 |
+
1.0,
|
849 |
+
1.0,
|
850 |
+
0.0,
|
851 |
+
0.0,
|
852 |
+
1.0,
|
853 |
+
0.0
|
854 |
+
],
|
855 |
+
"min": [
|
856 |
+
-0.9809081554412842,
|
857 |
+
-0.9554349184036255,
|
858 |
+
-0.9994775056838989,
|
859 |
+
0.0,
|
860 |
+
0.0,
|
861 |
+
-1.0,
|
862 |
+
0.0
|
863 |
+
],
|
864 |
+
"q01": [
|
865 |
+
-0.5534318816661835,
|
866 |
+
-0.4797285574674606,
|
867 |
+
-0.5314934802055359,
|
868 |
+
0.0,
|
869 |
+
0.0,
|
870 |
+
-0.8855219376087189,
|
871 |
+
0.0
|
872 |
+
],
|
873 |
+
"q99": [
|
874 |
+
0.42652835428714786,
|
875 |
+
0.5000944086909298,
|
876 |
+
0.639823433756829,
|
877 |
+
0.0,
|
878 |
+
0.0,
|
879 |
+
0.984243879914284,
|
880 |
+
0.0
|
881 |
+
],
|
882 |
+
"mask": [
|
883 |
+
true,
|
884 |
+
true,
|
885 |
+
true,
|
886 |
+
true,
|
887 |
+
true,
|
888 |
+
true,
|
889 |
+
false
|
890 |
+
]
|
891 |
+
},
|
892 |
+
"proprio": {
|
893 |
+
"mean": [
|
894 |
+
0.0,
|
895 |
+
0.0,
|
896 |
+
0.0,
|
897 |
+
0.0,
|
898 |
+
0.0,
|
899 |
+
0.0,
|
900 |
+
0.0
|
901 |
+
],
|
902 |
+
"std": [
|
903 |
+
0.0,
|
904 |
+
0.0,
|
905 |
+
0.0,
|
906 |
+
0.0,
|
907 |
+
0.0,
|
908 |
+
0.0,
|
909 |
+
0.0
|
910 |
+
],
|
911 |
+
"max": [
|
912 |
+
0.0,
|
913 |
+
0.0,
|
914 |
+
0.0,
|
915 |
+
0.0,
|
916 |
+
0.0,
|
917 |
+
0.0,
|
918 |
+
0.0
|
919 |
+
],
|
920 |
+
"min": [
|
921 |
+
0.0,
|
922 |
+
0.0,
|
923 |
+
0.0,
|
924 |
+
0.0,
|
925 |
+
0.0,
|
926 |
+
0.0,
|
927 |
+
0.0
|
928 |
+
],
|
929 |
+
"q01": [
|
930 |
+
0.0,
|
931 |
+
0.0,
|
932 |
+
0.0,
|
933 |
+
0.0,
|
934 |
+
0.0,
|
935 |
+
0.0,
|
936 |
+
0.0
|
937 |
+
],
|
938 |
+
"q99": [
|
939 |
+
0.0,
|
940 |
+
0.0,
|
941 |
+
0.0,
|
942 |
+
0.0,
|
943 |
+
0.0,
|
944 |
+
0.0,
|
945 |
+
0.0
|
946 |
+
]
|
947 |
+
},
|
948 |
+
"num_transitions": 42328,
|
949 |
+
"num_trajectories": 1647
|
950 |
+
},
|
951 |
+
"roboturk/0.1.0": {
|
952 |
+
"action": {
|
953 |
+
"mean": [
|
954 |
+
0.001444889116100967,
|
955 |
+
-0.0015945355407893658,
|
956 |
+
-0.0011753803119063377,
|
957 |
+
0.002301239175722003,
|
958 |
+
-0.0009382442804053426,
|
959 |
+
-0.00011485860886750743,
|
960 |
+
0.5746025443077087
|
961 |
+
],
|
962 |
+
"std": [
|
963 |
+
0.0493537075817585,
|
964 |
+
0.06354564428329468,
|
965 |
+
0.06116492301225662,
|
966 |
+
0.0955340564250946,
|
967 |
+
0.08420011401176453,
|
968 |
+
0.06517910957336426,
|
969 |
+
0.4945177137851715
|
970 |
+
],
|
971 |
+
"max": [
|
972 |
+
0.39124172925949097,
|
973 |
+
0.4601028263568878,
|
974 |
+
0.4870833456516266,
|
975 |
+
1.816888689994812,
|
976 |
+
1.8240282535552979,
|
977 |
+
1.4824820756912231,
|
978 |
+
1.0
|
979 |
+
],
|
980 |
+
"min": [
|
981 |
+
-0.6546999216079712,
|
982 |
+
-0.6365841031074524,
|
983 |
+
-0.4217723608016968,
|
984 |
+
-1.6695482730865479,
|
985 |
+
-1.8023357391357422,
|
986 |
+
-1.4630827903747559,
|
987 |
+
0.0
|
988 |
+
],
|
989 |
+
"q01": [
|
990 |
+
-0.1342635464668274,
|
991 |
+
-0.19996687173843383,
|
992 |
+
-0.1482972100377083,
|
993 |
+
-0.20720748245716095,
|
994 |
+
-0.09676413893699647,
|
995 |
+
-0.18075634717941286,
|
996 |
+
0.0
|
997 |
+
],
|
998 |
+
"q99": [
|
999 |
+
0.14956976801157001,
|
1000 |
+
0.1805950567126275,
|
1001 |
+
0.18841815620660796,
|
1002 |
+
0.21615413755178453,
|
1003 |
+
0.09457383215427405,
|
1004 |
+
0.18543301910162005,
|
1005 |
+
1.0
|
1006 |
+
],
|
1007 |
+
"mask": [
|
1008 |
+
true,
|
1009 |
+
true,
|
1010 |
+
true,
|
1011 |
+
true,
|
1012 |
+
true,
|
1013 |
+
true,
|
1014 |
+
false
|
1015 |
+
]
|
1016 |
+
},
|
1017 |
+
"proprio": {
|
1018 |
+
"mean": [
|
1019 |
+
0.0,
|
1020 |
+
0.0,
|
1021 |
+
0.0,
|
1022 |
+
0.0,
|
1023 |
+
0.0,
|
1024 |
+
0.0,
|
1025 |
+
0.0
|
1026 |
+
],
|
1027 |
+
"std": [
|
1028 |
+
0.0,
|
1029 |
+
0.0,
|
1030 |
+
0.0,
|
1031 |
+
0.0,
|
1032 |
+
0.0,
|
1033 |
+
0.0,
|
1034 |
+
0.0
|
1035 |
+
],
|
1036 |
+
"max": [
|
1037 |
+
0.0,
|
1038 |
+
0.0,
|
1039 |
+
0.0,
|
1040 |
+
0.0,
|
1041 |
+
0.0,
|
1042 |
+
0.0,
|
1043 |
+
0.0
|
1044 |
+
],
|
1045 |
+
"min": [
|
1046 |
+
0.0,
|
1047 |
+
0.0,
|
1048 |
+
0.0,
|
1049 |
+
0.0,
|
1050 |
+
0.0,
|
1051 |
+
0.0,
|
1052 |
+
0.0
|
1053 |
+
],
|
1054 |
+
"q01": [
|
1055 |
+
0.0,
|
1056 |
+
0.0,
|
1057 |
+
0.0,
|
1058 |
+
0.0,
|
1059 |
+
0.0,
|
1060 |
+
0.0,
|
1061 |
+
0.0
|
1062 |
+
],
|
1063 |
+
"q99": [
|
1064 |
+
0.0,
|
1065 |
+
0.0,
|
1066 |
+
0.0,
|
1067 |
+
0.0,
|
1068 |
+
0.0,
|
1069 |
+
0.0,
|
1070 |
+
0.0
|
1071 |
+
]
|
1072 |
+
},
|
1073 |
+
"num_transitions": 187507,
|
1074 |
+
"num_trajectories": 1995
|
1075 |
+
},
|
1076 |
+
"viola/0.1.0": {
|
1077 |
+
"action": {
|
1078 |
+
"mean": [
|
1079 |
+
0.04761853069067001,
|
1080 |
+
-0.029204534366726875,
|
1081 |
+
0.055867329239845276,
|
1082 |
+
-0.0026185200549662113,
|
1083 |
+
0.006867341697216034,
|
1084 |
+
-0.016821356490254402,
|
1085 |
+
0.7323777675628662
|
1086 |
+
],
|
1087 |
+
"std": [
|
1088 |
+
0.39157867431640625,
|
1089 |
+
0.40765219926834106,
|
1090 |
+
0.40077903866767883,
|
1091 |
+
0.10023998469114304,
|
1092 |
+
0.08443189412355423,
|
1093 |
+
0.10375089943408966,
|
1094 |
+
0.442600816488266
|
1095 |
+
],
|
1096 |
+
"max": [
|
1097 |
+
1.0,
|
1098 |
+
1.0,
|
1099 |
+
1.0,
|
1100 |
+
0.375,
|
1101 |
+
0.36321428418159485,
|
1102 |
+
0.375,
|
1103 |
+
1.0
|
1104 |
+
],
|
1105 |
+
"min": [
|
1106 |
+
-1.0,
|
1107 |
+
-1.0,
|
1108 |
+
-1.0,
|
1109 |
+
-0.375,
|
1110 |
+
-0.375,
|
1111 |
+
-0.375,
|
1112 |
+
0.0
|
1113 |
+
],
|
1114 |
+
"q01": [
|
1115 |
+
-0.9628571271896362,
|
1116 |
+
-1.0,
|
1117 |
+
-1.0,
|
1118 |
+
-0.26249998807907104,
|
1119 |
+
-0.21321429312229156,
|
1120 |
+
-0.3385714292526245,
|
1121 |
+
0.0
|
1122 |
+
],
|
1123 |
+
"q99": [
|
1124 |
+
0.9114285707473755,
|
1125 |
+
0.868571400642395,
|
1126 |
+
1.0,
|
1127 |
+
0.2817857265472412,
|
1128 |
+
0.2239285707473755,
|
1129 |
+
0.3557142913341522,
|
1130 |
+
1.0
|
1131 |
+
],
|
1132 |
+
"mask": [
|
1133 |
+
true,
|
1134 |
+
true,
|
1135 |
+
true,
|
1136 |
+
true,
|
1137 |
+
true,
|
1138 |
+
true,
|
1139 |
+
false
|
1140 |
+
]
|
1141 |
+
},
|
1142 |
+
"proprio": {
|
1143 |
+
"mean": [
|
1144 |
+
0.0,
|
1145 |
+
0.0,
|
1146 |
+
0.0,
|
1147 |
+
0.0,
|
1148 |
+
0.0,
|
1149 |
+
0.0,
|
1150 |
+
0.0
|
1151 |
+
],
|
1152 |
+
"std": [
|
1153 |
+
0.0,
|
1154 |
+
0.0,
|
1155 |
+
0.0,
|
1156 |
+
0.0,
|
1157 |
+
0.0,
|
1158 |
+
0.0,
|
1159 |
+
0.0
|
1160 |
+
],
|
1161 |
+
"max": [
|
1162 |
+
0.0,
|
1163 |
+
0.0,
|
1164 |
+
0.0,
|
1165 |
+
0.0,
|
1166 |
+
0.0,
|
1167 |
+
0.0,
|
1168 |
+
0.0
|
1169 |
+
],
|
1170 |
+
"min": [
|
1171 |
+
0.0,
|
1172 |
+
0.0,
|
1173 |
+
0.0,
|
1174 |
+
0.0,
|
1175 |
+
0.0,
|
1176 |
+
0.0,
|
1177 |
+
0.0
|
1178 |
+
],
|
1179 |
+
"q01": [
|
1180 |
+
0.0,
|
1181 |
+
0.0,
|
1182 |
+
0.0,
|
1183 |
+
0.0,
|
1184 |
+
0.0,
|
1185 |
+
0.0,
|
1186 |
+
0.0
|
1187 |
+
],
|
1188 |
+
"q99": [
|
1189 |
+
0.0,
|
1190 |
+
0.0,
|
1191 |
+
0.0,
|
1192 |
+
0.0,
|
1193 |
+
0.0,
|
1194 |
+
0.0,
|
1195 |
+
0.0
|
1196 |
+
]
|
1197 |
+
},
|
1198 |
+
"num_transitions": 76324,
|
1199 |
+
"num_trajectories": 150
|
1200 |
+
},
|
1201 |
+
"berkeley_autolab_ur5/0.1.0": {
|
1202 |
+
"action": {
|
1203 |
+
"mean": [
|
1204 |
+
0.0005683613708242774,
|
1205 |
+
0.0012176961172372103,
|
1206 |
+
-0.0005296385497786105,
|
1207 |
+
0.00021029777417425066,
|
1208 |
+
6.069485243642703e-05,
|
1209 |
+
0.0012049867073073983,
|
1210 |
+
0.6298308372497559
|
1211 |
+
],
|
1212 |
+
"std": [
|
1213 |
+
0.011533073149621487,
|
1214 |
+
0.007990497164428234,
|
1215 |
+
0.009577799588441849,
|
1216 |
+
0.009432999417185783,
|
1217 |
+
0.016427574679255486,
|
1218 |
+
0.011054049246013165,
|
1219 |
+
0.482679545879364
|
1220 |
+
],
|
1221 |
+
"max": [
|
1222 |
+
0.019999999552965164,
|
1223 |
+
0.019999999552965164,
|
1224 |
+
0.019999999552965164,
|
1225 |
+
0.06666667014360428,
|
1226 |
+
0.06666667014360428,
|
1227 |
+
0.06666667014360428,
|
1228 |
+
1.0
|
1229 |
+
],
|
1230 |
+
"min": [
|
1231 |
+
-0.019999999552965164,
|
1232 |
+
-0.019999999552965164,
|
1233 |
+
-0.019999999552965164,
|
1234 |
+
-0.06666667014360428,
|
1235 |
+
-0.06666667014360428,
|
1236 |
+
-0.06666667014360428,
|
1237 |
+
0.0
|
1238 |
+
],
|
1239 |
+
"q01": [
|
1240 |
+
-0.019999999552965164,
|
1241 |
+
-0.019999999552965164,
|
1242 |
+
-0.019999999552965164,
|
1243 |
+
-0.02628571353852749,
|
1244 |
+
-0.06666667014360428,
|
1245 |
+
-0.03847619146108627,
|
1246 |
+
0.0
|
1247 |
+
],
|
1248 |
+
"q99": [
|
1249 |
+
0.019999999552965164,
|
1250 |
+
0.019999999552965164,
|
1251 |
+
0.019999999552965164,
|
1252 |
+
0.031809523701667786,
|
1253 |
+
0.06666667014360428,
|
1254 |
+
0.036571428179740906,
|
1255 |
+
1.0
|
1256 |
+
],
|
1257 |
+
"mask": [
|
1258 |
+
true,
|
1259 |
+
true,
|
1260 |
+
true,
|
1261 |
+
true,
|
1262 |
+
true,
|
1263 |
+
true,
|
1264 |
+
false
|
1265 |
+
]
|
1266 |
+
},
|
1267 |
+
"proprio": {
|
1268 |
+
"mean": [
|
1269 |
+
0.0,
|
1270 |
+
0.0,
|
1271 |
+
0.0,
|
1272 |
+
0.0,
|
1273 |
+
0.0,
|
1274 |
+
0.0,
|
1275 |
+
0.0
|
1276 |
+
],
|
1277 |
+
"std": [
|
1278 |
+
0.0,
|
1279 |
+
0.0,
|
1280 |
+
0.0,
|
1281 |
+
0.0,
|
1282 |
+
0.0,
|
1283 |
+
0.0,
|
1284 |
+
0.0
|
1285 |
+
],
|
1286 |
+
"max": [
|
1287 |
+
0.0,
|
1288 |
+
0.0,
|
1289 |
+
0.0,
|
1290 |
+
0.0,
|
1291 |
+
0.0,
|
1292 |
+
0.0,
|
1293 |
+
0.0
|
1294 |
+
],
|
1295 |
+
"min": [
|
1296 |
+
0.0,
|
1297 |
+
0.0,
|
1298 |
+
0.0,
|
1299 |
+
0.0,
|
1300 |
+
0.0,
|
1301 |
+
0.0,
|
1302 |
+
0.0
|
1303 |
+
],
|
1304 |
+
"q01": [
|
1305 |
+
0.0,
|
1306 |
+
0.0,
|
1307 |
+
0.0,
|
1308 |
+
0.0,
|
1309 |
+
0.0,
|
1310 |
+
0.0,
|
1311 |
+
0.0
|
1312 |
+
],
|
1313 |
+
"q99": [
|
1314 |
+
0.0,
|
1315 |
+
0.0,
|
1316 |
+
0.0,
|
1317 |
+
0.0,
|
1318 |
+
0.0,
|
1319 |
+
0.0,
|
1320 |
+
0.0
|
1321 |
+
]
|
1322 |
+
},
|
1323 |
+
"num_transitions": 97939,
|
1324 |
+
"num_trajectories": 1000
|
1325 |
+
},
|
1326 |
+
"toto/0.1.0": {
|
1327 |
+
"action": {
|
1328 |
+
"mean": [
|
1329 |
+
0.3854214549064636,
|
1330 |
+
0.007769507821649313,
|
1331 |
+
0.3632742166519165,
|
1332 |
+
-0.665202796459198,
|
1333 |
+
0.1890396624803543,
|
1334 |
+
0.0329875648021698,
|
1335 |
+
0.0
|
1336 |
+
],
|
1337 |
+
"std": [
|
1338 |
+
0.12211630493402481,
|
1339 |
+
0.19378569722175598,
|
1340 |
+
0.10178232192993164,
|
1341 |
+
0.5725256204605103,
|
1342 |
+
0.298846036195755,
|
1343 |
+
0.32599160075187683,
|
1344 |
+
0.0
|
1345 |
+
],
|
1346 |
+
"max": [
|
1347 |
+
0.6839867234230042,
|
1348 |
+
0.4454185664653778,
|
1349 |
+
0.7984078526496887,
|
1350 |
+
2.120781660079956,
|
1351 |
+
1.371164321899414,
|
1352 |
+
1.4118704795837402,
|
1353 |
+
0.0
|
1354 |
+
],
|
1355 |
+
"min": [
|
1356 |
+
0.09922284632921219,
|
1357 |
+
-0.5180193781852722,
|
1358 |
+
0.13791072368621826,
|
1359 |
+
-2.635117530822754,
|
1360 |
+
-1.0734480619430542,
|
1361 |
+
-1.9282547235488892,
|
1362 |
+
0.0
|
1363 |
+
],
|
1364 |
+
"q01": [
|
1365 |
+
0.1756722891330719,
|
1366 |
+
-0.3077590811252594,
|
1367 |
+
0.235383919775486,
|
1368 |
+
-2.0908505964279174,
|
1369 |
+
-0.6191593289375306,
|
1370 |
+
-0.7488683319091797,
|
1371 |
+
0.0
|
1372 |
+
],
|
1373 |
+
"q99": [
|
1374 |
+
0.6136963081359863,
|
1375 |
+
0.33704194784164443,
|
1376 |
+
0.6681221985816956,
|
1377 |
+
0.7422861719131538,
|
1378 |
+
0.7955395007133507,
|
1379 |
+
0.740464625358582,
|
1380 |
+
0.0
|
1381 |
+
],
|
1382 |
+
"mask": [
|
1383 |
+
true,
|
1384 |
+
true,
|
1385 |
+
true,
|
1386 |
+
true,
|
1387 |
+
true,
|
1388 |
+
true,
|
1389 |
+
false
|
1390 |
+
]
|
1391 |
+
},
|
1392 |
+
"proprio": {
|
1393 |
+
"mean": [
|
1394 |
+
0.0,
|
1395 |
+
0.0,
|
1396 |
+
0.0,
|
1397 |
+
0.0,
|
1398 |
+
0.0,
|
1399 |
+
0.0,
|
1400 |
+
0.0
|
1401 |
+
],
|
1402 |
+
"std": [
|
1403 |
+
0.0,
|
1404 |
+
0.0,
|
1405 |
+
0.0,
|
1406 |
+
0.0,
|
1407 |
+
0.0,
|
1408 |
+
0.0,
|
1409 |
+
0.0
|
1410 |
+
],
|
1411 |
+
"max": [
|
1412 |
+
0.0,
|
1413 |
+
0.0,
|
1414 |
+
0.0,
|
1415 |
+
0.0,
|
1416 |
+
0.0,
|
1417 |
+
0.0,
|
1418 |
+
0.0
|
1419 |
+
],
|
1420 |
+
"min": [
|
1421 |
+
0.0,
|
1422 |
+
0.0,
|
1423 |
+
0.0,
|
1424 |
+
0.0,
|
1425 |
+
0.0,
|
1426 |
+
0.0,
|
1427 |
+
0.0
|
1428 |
+
],
|
1429 |
+
"q01": [
|
1430 |
+
0.0,
|
1431 |
+
0.0,
|
1432 |
+
0.0,
|
1433 |
+
0.0,
|
1434 |
+
0.0,
|
1435 |
+
0.0,
|
1436 |
+
0.0
|
1437 |
+
],
|
1438 |
+
"q99": [
|
1439 |
+
0.0,
|
1440 |
+
0.0,
|
1441 |
+
0.0,
|
1442 |
+
0.0,
|
1443 |
+
0.0,
|
1444 |
+
0.0,
|
1445 |
+
0.0
|
1446 |
+
]
|
1447 |
+
},
|
1448 |
+
"num_transitions": 325699,
|
1449 |
+
"num_trajectories": 1003
|
1450 |
+
},
|
1451 |
+
"language_table/0.1.0": {
|
1452 |
+
"action": {
|
1453 |
+
"mean": [
|
1454 |
+
0.00014891766477376223,
|
1455 |
+
-0.0005636657006107271,
|
1456 |
+
0.0,
|
1457 |
+
0.0,
|
1458 |
+
0.0,
|
1459 |
+
0.0,
|
1460 |
+
1.0
|
1461 |
+
],
|
1462 |
+
"std": [
|
1463 |
+
0.030162859708070755,
|
1464 |
+
0.04230763390660286,
|
1465 |
+
0.0,
|
1466 |
+
0.0,
|
1467 |
+
0.0,
|
1468 |
+
0.0,
|
1469 |
+
0.0
|
1470 |
+
],
|
1471 |
+
"max": [
|
1472 |
+
0.23357294499874115,
|
1473 |
+
0.24496802687644958,
|
1474 |
+
0.0,
|
1475 |
+
0.0,
|
1476 |
+
0.0,
|
1477 |
+
0.0,
|
1478 |
+
1.0
|
1479 |
+
],
|
1480 |
+
"min": [
|
1481 |
+
-0.21989956498146057,
|
1482 |
+
-0.23736150562763214,
|
1483 |
+
0.0,
|
1484 |
+
0.0,
|
1485 |
+
0.0,
|
1486 |
+
0.0,
|
1487 |
+
1.0
|
1488 |
+
],
|
1489 |
+
"q01": [
|
1490 |
+
-0.08179590478539467,
|
1491 |
+
-0.11795833334326744,
|
1492 |
+
0.0,
|
1493 |
+
0.0,
|
1494 |
+
0.0,
|
1495 |
+
0.0,
|
1496 |
+
1.0
|
1497 |
+
],
|
1498 |
+
"q99": [
|
1499 |
+
0.08822273463010788,
|
1500 |
+
0.1191693339496851,
|
1501 |
+
0.0,
|
1502 |
+
0.0,
|
1503 |
+
0.0,
|
1504 |
+
0.0,
|
1505 |
+
1.0
|
1506 |
+
],
|
1507 |
+
"mask": [
|
1508 |
+
true,
|
1509 |
+
true,
|
1510 |
+
true,
|
1511 |
+
true,
|
1512 |
+
true,
|
1513 |
+
true,
|
1514 |
+
false
|
1515 |
+
]
|
1516 |
+
},
|
1517 |
+
"proprio": {
|
1518 |
+
"mean": [
|
1519 |
+
0.0,
|
1520 |
+
0.0,
|
1521 |
+
0.0,
|
1522 |
+
0.0,
|
1523 |
+
0.0,
|
1524 |
+
0.0,
|
1525 |
+
0.0
|
1526 |
+
],
|
1527 |
+
"std": [
|
1528 |
+
0.0,
|
1529 |
+
0.0,
|
1530 |
+
0.0,
|
1531 |
+
0.0,
|
1532 |
+
0.0,
|
1533 |
+
0.0,
|
1534 |
+
0.0
|
1535 |
+
],
|
1536 |
+
"max": [
|
1537 |
+
0.0,
|
1538 |
+
0.0,
|
1539 |
+
0.0,
|
1540 |
+
0.0,
|
1541 |
+
0.0,
|
1542 |
+
0.0,
|
1543 |
+
0.0
|
1544 |
+
],
|
1545 |
+
"min": [
|
1546 |
+
0.0,
|
1547 |
+
0.0,
|
1548 |
+
0.0,
|
1549 |
+
0.0,
|
1550 |
+
0.0,
|
1551 |
+
0.0,
|
1552 |
+
0.0
|
1553 |
+
],
|
1554 |
+
"q01": [
|
1555 |
+
0.0,
|
1556 |
+
0.0,
|
1557 |
+
0.0,
|
1558 |
+
0.0,
|
1559 |
+
0.0,
|
1560 |
+
0.0,
|
1561 |
+
0.0
|
1562 |
+
],
|
1563 |
+
"q99": [
|
1564 |
+
0.0,
|
1565 |
+
0.0,
|
1566 |
+
0.0,
|
1567 |
+
0.0,
|
1568 |
+
0.0,
|
1569 |
+
0.0,
|
1570 |
+
0.0
|
1571 |
+
]
|
1572 |
+
},
|
1573 |
+
"num_transitions": 7045476,
|
1574 |
+
"num_trajectories": 442226
|
1575 |
+
},
|
1576 |
+
"stanford_hydra_dataset_converted_externally_to_rlds/0.1.0": {
|
1577 |
+
"action": {
|
1578 |
+
"mean": [
|
1579 |
+
0.0007790043600834906,
|
1580 |
+
0.00013707877951674163,
|
1581 |
+
-0.000254859565757215,
|
1582 |
+
0.0012903243768960238,
|
1583 |
+
-0.004751724191009998,
|
1584 |
+
0.002692892448976636,
|
1585 |
+
0.48855218291282654
|
1586 |
+
],
|
1587 |
+
"std": [
|
1588 |
+
0.008022183552384377,
|
1589 |
+
0.009131456725299358,
|
1590 |
+
0.00957438349723816,
|
1591 |
+
0.04122224077582359,
|
1592 |
+
0.03843001648783684,
|
1593 |
+
0.046067025512456894,
|
1594 |
+
0.49978113174438477
|
1595 |
+
],
|
1596 |
+
"max": [
|
1597 |
+
0.02499854564666748,
|
1598 |
+
0.02499903365969658,
|
1599 |
+
0.024999922141432762,
|
1600 |
+
0.24974457919597626,
|
1601 |
+
0.24997030198574066,
|
1602 |
+
0.24999946355819702,
|
1603 |
+
1.0
|
1604 |
+
],
|
1605 |
+
"min": [
|
1606 |
+
-0.024999044835567474,
|
1607 |
+
-0.024999700486660004,
|
1608 |
+
-0.02499929815530777,
|
1609 |
+
-0.24993225932121277,
|
1610 |
+
-0.2499666064977646,
|
1611 |
+
-0.2499932497739792,
|
1612 |
+
0.0
|
1613 |
+
],
|
1614 |
+
"q01": [
|
1615 |
+
-0.019992006458342076,
|
1616 |
+
-0.02415412735193968,
|
1617 |
+
-0.022941758055239916,
|
1618 |
+
-0.11085530579090118,
|
1619 |
+
-0.12024572037160397,
|
1620 |
+
-0.13314770206809043,
|
1621 |
+
0.0
|
1622 |
+
],
|
1623 |
+
"q99": [
|
1624 |
+
0.022886231057345868,
|
1625 |
+
0.022358838934451335,
|
1626 |
+
0.02410089675337076,
|
1627 |
+
0.12370114490389822,
|
1628 |
+
0.11323311634361738,
|
1629 |
+
0.18474749639630164,
|
1630 |
+
1.0
|
1631 |
+
],
|
1632 |
+
"mask": [
|
1633 |
+
true,
|
1634 |
+
true,
|
1635 |
+
true,
|
1636 |
+
true,
|
1637 |
+
true,
|
1638 |
+
true,
|
1639 |
+
false
|
1640 |
+
]
|
1641 |
+
},
|
1642 |
+
"proprio": {
|
1643 |
+
"mean": [
|
1644 |
+
0.0,
|
1645 |
+
0.0,
|
1646 |
+
0.0,
|
1647 |
+
0.0,
|
1648 |
+
0.0,
|
1649 |
+
0.0,
|
1650 |
+
0.0
|
1651 |
+
],
|
1652 |
+
"std": [
|
1653 |
+
0.0,
|
1654 |
+
0.0,
|
1655 |
+
0.0,
|
1656 |
+
0.0,
|
1657 |
+
0.0,
|
1658 |
+
0.0,
|
1659 |
+
0.0
|
1660 |
+
],
|
1661 |
+
"max": [
|
1662 |
+
0.0,
|
1663 |
+
0.0,
|
1664 |
+
0.0,
|
1665 |
+
0.0,
|
1666 |
+
0.0,
|
1667 |
+
0.0,
|
1668 |
+
0.0
|
1669 |
+
],
|
1670 |
+
"min": [
|
1671 |
+
0.0,
|
1672 |
+
0.0,
|
1673 |
+
0.0,
|
1674 |
+
0.0,
|
1675 |
+
0.0,
|
1676 |
+
0.0,
|
1677 |
+
0.0
|
1678 |
+
],
|
1679 |
+
"q01": [
|
1680 |
+
0.0,
|
1681 |
+
0.0,
|
1682 |
+
0.0,
|
1683 |
+
0.0,
|
1684 |
+
0.0,
|
1685 |
+
0.0,
|
1686 |
+
0.0
|
1687 |
+
],
|
1688 |
+
"q99": [
|
1689 |
+
0.0,
|
1690 |
+
0.0,
|
1691 |
+
0.0,
|
1692 |
+
0.0,
|
1693 |
+
0.0,
|
1694 |
+
0.0,
|
1695 |
+
0.0
|
1696 |
+
]
|
1697 |
+
},
|
1698 |
+
"num_transitions": 358234,
|
1699 |
+
"num_trajectories": 570
|
1700 |
+
},
|
1701 |
+
"austin_buds_dataset_converted_externally_to_rlds/0.1.0": {
|
1702 |
+
"action": {
|
1703 |
+
"mean": [
|
1704 |
+
-0.07678329944610596,
|
1705 |
+
0.0036849123425781727,
|
1706 |
+
0.05644941329956055,
|
1707 |
+
0.0,
|
1708 |
+
0.0,
|
1709 |
+
0.0,
|
1710 |
+
0.3510494828224182
|
1711 |
+
],
|
1712 |
+
"std": [
|
1713 |
+
0.6367746591567993,
|
1714 |
+
0.3788914680480957,
|
1715 |
+
0.47796377539634705,
|
1716 |
+
0.0,
|
1717 |
+
0.0,
|
1718 |
+
0.0,
|
1719 |
+
0.4772108495235443
|
1720 |
+
],
|
1721 |
+
"max": [
|
1722 |
+
1.0,
|
1723 |
+
1.0,
|
1724 |
+
1.0,
|
1725 |
+
0.0,
|
1726 |
+
0.0,
|
1727 |
+
0.0,
|
1728 |
+
1.0
|
1729 |
+
],
|
1730 |
+
"min": [
|
1731 |
+
-1.0,
|
1732 |
+
-1.0,
|
1733 |
+
-1.0,
|
1734 |
+
0.0,
|
1735 |
+
0.0,
|
1736 |
+
0.0,
|
1737 |
+
0.0
|
1738 |
+
],
|
1739 |
+
"q01": [
|
1740 |
+
-1.0,
|
1741 |
+
-0.9599999785423279,
|
1742 |
+
-0.8714285492897034,
|
1743 |
+
0.0,
|
1744 |
+
0.0,
|
1745 |
+
0.0,
|
1746 |
+
0.0
|
1747 |
+
],
|
1748 |
+
"q99": [
|
1749 |
+
1.0,
|
1750 |
+
0.8600000143051147,
|
1751 |
+
1.0,
|
1752 |
+
0.0,
|
1753 |
+
0.0,
|
1754 |
+
0.0,
|
1755 |
+
1.0
|
1756 |
+
],
|
1757 |
+
"mask": [
|
1758 |
+
true,
|
1759 |
+
true,
|
1760 |
+
true,
|
1761 |
+
true,
|
1762 |
+
true,
|
1763 |
+
true,
|
1764 |
+
false
|
1765 |
+
]
|
1766 |
+
},
|
1767 |
+
"proprio": {
|
1768 |
+
"mean": [
|
1769 |
+
0.0,
|
1770 |
+
0.0,
|
1771 |
+
0.0,
|
1772 |
+
0.0,
|
1773 |
+
0.0,
|
1774 |
+
0.0,
|
1775 |
+
0.0
|
1776 |
+
],
|
1777 |
+
"std": [
|
1778 |
+
0.0,
|
1779 |
+
0.0,
|
1780 |
+
0.0,
|
1781 |
+
0.0,
|
1782 |
+
0.0,
|
1783 |
+
0.0,
|
1784 |
+
0.0
|
1785 |
+
],
|
1786 |
+
"max": [
|
1787 |
+
0.0,
|
1788 |
+
0.0,
|
1789 |
+
0.0,
|
1790 |
+
0.0,
|
1791 |
+
0.0,
|
1792 |
+
0.0,
|
1793 |
+
0.0
|
1794 |
+
],
|
1795 |
+
"min": [
|
1796 |
+
0.0,
|
1797 |
+
0.0,
|
1798 |
+
0.0,
|
1799 |
+
0.0,
|
1800 |
+
0.0,
|
1801 |
+
0.0,
|
1802 |
+
0.0
|
1803 |
+
],
|
1804 |
+
"q01": [
|
1805 |
+
0.0,
|
1806 |
+
0.0,
|
1807 |
+
0.0,
|
1808 |
+
0.0,
|
1809 |
+
0.0,
|
1810 |
+
0.0,
|
1811 |
+
0.0
|
1812 |
+
],
|
1813 |
+
"q99": [
|
1814 |
+
0.0,
|
1815 |
+
0.0,
|
1816 |
+
0.0,
|
1817 |
+
0.0,
|
1818 |
+
0.0,
|
1819 |
+
0.0,
|
1820 |
+
0.0
|
1821 |
+
]
|
1822 |
+
},
|
1823 |
+
"num_transitions": 34112,
|
1824 |
+
"num_trajectories": 50
|
1825 |
+
},
|
1826 |
+
"nyu_franka_play_dataset_converted_externally_to_rlds/0.1.0": {
|
1827 |
+
"action": {
|
1828 |
+
"mean": [
|
1829 |
+
0.0010219910182058811,
|
1830 |
+
-0.00012002632865915075,
|
1831 |
+
0.00032894135802052915,
|
1832 |
+
0.0015034276293590665,
|
1833 |
+
-0.002198528265580535,
|
1834 |
+
-0.0016632305923849344,
|
1835 |
+
0.7230083346366882
|
1836 |
+
],
|
1837 |
+
"std": [
|
1838 |
+
0.013274150900542736,
|
1839 |
+
0.013215919025242329,
|
1840 |
+
0.01282210648059845,
|
1841 |
+
0.27324533462524414,
|
1842 |
+
0.05702253058552742,
|
1843 |
+
0.03917279839515686,
|
1844 |
+
0.44753193855285645
|
1845 |
+
],
|
1846 |
+
"max": [
|
1847 |
+
0.06424188613891602,
|
1848 |
+
0.07027634978294373,
|
1849 |
+
0.06129661202430725,
|
1850 |
+
6.281067848205566,
|
1851 |
+
0.1967729926109314,
|
1852 |
+
0.26377415657043457,
|
1853 |
+
1.0
|
1854 |
+
],
|
1855 |
+
"min": [
|
1856 |
+
-0.05952230095863342,
|
1857 |
+
-0.07232445478439331,
|
1858 |
+
-0.06730806827545166,
|
1859 |
+
-6.278434753417969,
|
1860 |
+
-0.21479034423828125,
|
1861 |
+
-0.3627619743347168,
|
1862 |
+
0.0
|
1863 |
+
],
|
1864 |
+
"q01": [
|
1865 |
+
-0.03199600875377655,
|
1866 |
+
-0.032861671447753905,
|
1867 |
+
-0.03368805110454559,
|
1868 |
+
-0.12080862045288086,
|
1869 |
+
-0.12175218224525451,
|
1870 |
+
-0.11370223641395569,
|
1871 |
+
0.0
|
1872 |
+
],
|
1873 |
+
"q99": [
|
1874 |
+
0.03101520001888276,
|
1875 |
+
0.0373908892273903,
|
1876 |
+
0.03646374464035038,
|
1877 |
+
0.11764093399047852,
|
1878 |
+
0.1258920183777809,
|
1879 |
+
0.09366151213645942,
|
1880 |
+
1.0
|
1881 |
+
],
|
1882 |
+
"mask": [
|
1883 |
+
true,
|
1884 |
+
true,
|
1885 |
+
true,
|
1886 |
+
true,
|
1887 |
+
true,
|
1888 |
+
true,
|
1889 |
+
false
|
1890 |
+
]
|
1891 |
+
},
|
1892 |
+
"proprio": {
|
1893 |
+
"mean": [
|
1894 |
+
0.0,
|
1895 |
+
0.0,
|
1896 |
+
0.0,
|
1897 |
+
0.0,
|
1898 |
+
0.0,
|
1899 |
+
0.0,
|
1900 |
+
0.0
|
1901 |
+
],
|
1902 |
+
"std": [
|
1903 |
+
0.0,
|
1904 |
+
0.0,
|
1905 |
+
0.0,
|
1906 |
+
0.0,
|
1907 |
+
0.0,
|
1908 |
+
0.0,
|
1909 |
+
0.0
|
1910 |
+
],
|
1911 |
+
"max": [
|
1912 |
+
0.0,
|
1913 |
+
0.0,
|
1914 |
+
0.0,
|
1915 |
+
0.0,
|
1916 |
+
0.0,
|
1917 |
+
0.0,
|
1918 |
+
0.0
|
1919 |
+
],
|
1920 |
+
"min": [
|
1921 |
+
0.0,
|
1922 |
+
0.0,
|
1923 |
+
0.0,
|
1924 |
+
0.0,
|
1925 |
+
0.0,
|
1926 |
+
0.0,
|
1927 |
+
0.0
|
1928 |
+
],
|
1929 |
+
"q01": [
|
1930 |
+
0.0,
|
1931 |
+
0.0,
|
1932 |
+
0.0,
|
1933 |
+
0.0,
|
1934 |
+
0.0,
|
1935 |
+
0.0,
|
1936 |
+
0.0
|
1937 |
+
],
|
1938 |
+
"q99": [
|
1939 |
+
0.0,
|
1940 |
+
0.0,
|
1941 |
+
0.0,
|
1942 |
+
0.0,
|
1943 |
+
0.0,
|
1944 |
+
0.0,
|
1945 |
+
0.0
|
1946 |
+
]
|
1947 |
+
},
|
1948 |
+
"num_transitions": 44875,
|
1949 |
+
"num_trajectories": 456
|
1950 |
+
},
|
1951 |
+
"furniture_bench_dataset_converted_externally_to_rlds/0.1.0": {
|
1952 |
+
"action": {
|
1953 |
+
"mean": [
|
1954 |
+
0.0001461071806261316,
|
1955 |
+
0.0010830992832779884,
|
1956 |
+
0.0006224963581189513,
|
1957 |
+
-0.0033032014034688473,
|
1958 |
+
-0.002688060747459531,
|
1959 |
+
0.018242614343762398,
|
1960 |
+
0.48854944109916687
|
1961 |
+
],
|
1962 |
+
"std": [
|
1963 |
+
0.016107233241200447,
|
1964 |
+
0.014891570433974266,
|
1965 |
+
0.014014236629009247,
|
1966 |
+
0.05827433615922928,
|
1967 |
+
0.11417083442211151,
|
1968 |
+
0.33479660749435425,
|
1969 |
+
0.4999157190322876
|
1970 |
+
],
|
1971 |
+
"max": [
|
1972 |
+
0.10000000149011612,
|
1973 |
+
0.10000000149011612,
|
1974 |
+
0.10000000149011612,
|
1975 |
+
0.8651833534240723,
|
1976 |
+
1.0909736156463623,
|
1977 |
+
2.863185405731201,
|
1978 |
+
1.0
|
1979 |
+
],
|
1980 |
+
"min": [
|
1981 |
+
-0.10495579987764359,
|
1982 |
+
-0.10939455777406693,
|
1983 |
+
-0.10000000149011612,
|
1984 |
+
-0.971906840801239,
|
1985 |
+
-1.0475432872772217,
|
1986 |
+
-3.06000018119812,
|
1987 |
+
0.0
|
1988 |
+
],
|
1989 |
+
"q01": [
|
1990 |
+
-0.053988199681043625,
|
1991 |
+
-0.05049169331789017,
|
1992 |
+
-0.032499241530895236,
|
1993 |
+
-0.1953887003660202,
|
1994 |
+
-0.41674559473991396,
|
1995 |
+
-0.8886768388748169,
|
1996 |
+
0.0
|
1997 |
+
],
|
1998 |
+
"q99": [
|
1999 |
+
0.05414841488003723,
|
2000 |
+
0.04965164884924884,
|
2001 |
+
0.060055799782276154,
|
2002 |
+
0.18231668293476103,
|
2003 |
+
0.39867786407470646,
|
2004 |
+
0.8772023963928218,
|
2005 |
+
1.0
|
2006 |
+
],
|
2007 |
+
"mask": [
|
2008 |
+
true,
|
2009 |
+
true,
|
2010 |
+
true,
|
2011 |
+
true,
|
2012 |
+
true,
|
2013 |
+
true,
|
2014 |
+
false
|
2015 |
+
]
|
2016 |
+
},
|
2017 |
+
"proprio": {
|
2018 |
+
"mean": [
|
2019 |
+
0.0,
|
2020 |
+
0.0,
|
2021 |
+
0.0,
|
2022 |
+
0.0,
|
2023 |
+
0.0,
|
2024 |
+
0.0,
|
2025 |
+
0.0
|
2026 |
+
],
|
2027 |
+
"std": [
|
2028 |
+
0.0,
|
2029 |
+
0.0,
|
2030 |
+
0.0,
|
2031 |
+
0.0,
|
2032 |
+
0.0,
|
2033 |
+
0.0,
|
2034 |
+
0.0
|
2035 |
+
],
|
2036 |
+
"max": [
|
2037 |
+
0.0,
|
2038 |
+
0.0,
|
2039 |
+
0.0,
|
2040 |
+
0.0,
|
2041 |
+
0.0,
|
2042 |
+
0.0,
|
2043 |
+
0.0
|
2044 |
+
],
|
2045 |
+
"min": [
|
2046 |
+
0.0,
|
2047 |
+
0.0,
|
2048 |
+
0.0,
|
2049 |
+
0.0,
|
2050 |
+
0.0,
|
2051 |
+
0.0,
|
2052 |
+
0.0
|
2053 |
+
],
|
2054 |
+
"q01": [
|
2055 |
+
0.0,
|
2056 |
+
0.0,
|
2057 |
+
0.0,
|
2058 |
+
0.0,
|
2059 |
+
0.0,
|
2060 |
+
0.0,
|
2061 |
+
0.0
|
2062 |
+
],
|
2063 |
+
"q99": [
|
2064 |
+
0.0,
|
2065 |
+
0.0,
|
2066 |
+
0.0,
|
2067 |
+
0.0,
|
2068 |
+
0.0,
|
2069 |
+
0.0,
|
2070 |
+
0.0
|
2071 |
+
]
|
2072 |
+
},
|
2073 |
+
"num_transitions": 3948057,
|
2074 |
+
"num_trajectories": 5100
|
2075 |
+
},
|
2076 |
+
"ucsd_kitchen_dataset_converted_externally_to_rlds/0.1.0": {
|
2077 |
+
"action": {
|
2078 |
+
"mean": [
|
2079 |
+
410.375732421875,
|
2080 |
+
116.9518814086914,
|
2081 |
+
192.35031127929688,
|
2082 |
+
-121.22441864013672,
|
2083 |
+
-33.84892654418945,
|
2084 |
+
50.016136169433594,
|
2085 |
+
0.741813600063324
|
2086 |
+
],
|
2087 |
+
"std": [
|
2088 |
+
122.81488037109375,
|
2089 |
+
108.80094909667969,
|
2090 |
+
130.30345153808594,
|
2091 |
+
116.2820053100586,
|
2092 |
+
27.62191390991211,
|
2093 |
+
41.02091979980469,
|
2094 |
+
0.4376337230205536
|
2095 |
+
],
|
2096 |
+
"max": [
|
2097 |
+
678.0,
|
2098 |
+
400.0,
|
2099 |
+
507.0,
|
2100 |
+
180.00001525878906,
|
2101 |
+
6.000013828277588,
|
2102 |
+
116.99998474121094,
|
2103 |
+
1.0
|
2104 |
+
],
|
2105 |
+
"min": [
|
2106 |
+
172.0,
|
2107 |
+
-166.0,
|
2108 |
+
-99.99999237060547,
|
2109 |
+
-180.00001525878906,
|
2110 |
+
-89.0,
|
2111 |
+
-96.00010681152344,
|
2112 |
+
0.0
|
2113 |
+
],
|
2114 |
+
"q01": [
|
2115 |
+
200.00001052856445,
|
2116 |
+
-102.31004211425781,
|
2117 |
+
-94.99993370056153,
|
2118 |
+
-180.00001525878906,
|
2119 |
+
-88.00001525878906,
|
2120 |
+
-38.999977111816406,
|
2121 |
+
0.0
|
2122 |
+
],
|
2123 |
+
"q99": [
|
2124 |
+
637.0,
|
2125 |
+
368.30999999999995,
|
2126 |
+
493.0,
|
2127 |
+
180.00001525878906,
|
2128 |
+
0.999983012676239,
|
2129 |
+
105.00001525878906,
|
2130 |
+
1.0
|
2131 |
+
],
|
2132 |
+
"mask": [
|
2133 |
+
true,
|
2134 |
+
true,
|
2135 |
+
true,
|
2136 |
+
true,
|
2137 |
+
true,
|
2138 |
+
true,
|
2139 |
+
false
|
2140 |
+
]
|
2141 |
+
},
|
2142 |
+
"proprio": {
|
2143 |
+
"mean": [
|
2144 |
+
0.0,
|
2145 |
+
0.0,
|
2146 |
+
0.0,
|
2147 |
+
0.0,
|
2148 |
+
0.0,
|
2149 |
+
0.0,
|
2150 |
+
0.0
|
2151 |
+
],
|
2152 |
+
"std": [
|
2153 |
+
0.0,
|
2154 |
+
0.0,
|
2155 |
+
0.0,
|
2156 |
+
0.0,
|
2157 |
+
0.0,
|
2158 |
+
0.0,
|
2159 |
+
0.0
|
2160 |
+
],
|
2161 |
+
"max": [
|
2162 |
+
0.0,
|
2163 |
+
0.0,
|
2164 |
+
0.0,
|
2165 |
+
0.0,
|
2166 |
+
0.0,
|
2167 |
+
0.0,
|
2168 |
+
0.0
|
2169 |
+
],
|
2170 |
+
"min": [
|
2171 |
+
0.0,
|
2172 |
+
0.0,
|
2173 |
+
0.0,
|
2174 |
+
0.0,
|
2175 |
+
0.0,
|
2176 |
+
0.0,
|
2177 |
+
0.0
|
2178 |
+
],
|
2179 |
+
"q01": [
|
2180 |
+
0.0,
|
2181 |
+
0.0,
|
2182 |
+
0.0,
|
2183 |
+
0.0,
|
2184 |
+
0.0,
|
2185 |
+
0.0,
|
2186 |
+
0.0
|
2187 |
+
],
|
2188 |
+
"q99": [
|
2189 |
+
0.0,
|
2190 |
+
0.0,
|
2191 |
+
0.0,
|
2192 |
+
0.0,
|
2193 |
+
0.0,
|
2194 |
+
0.0,
|
2195 |
+
0.0
|
2196 |
+
]
|
2197 |
+
},
|
2198 |
+
"num_transitions": 3970,
|
2199 |
+
"num_trajectories": 150
|
2200 |
+
},
|
2201 |
+
"austin_sailor_dataset_converted_externally_to_rlds/0.1.0": {
|
2202 |
+
"action": {
|
2203 |
+
"mean": [
|
2204 |
+
0.011825386434793472,
|
2205 |
+
0.0064610871486365795,
|
2206 |
+
0.060236409306526184,
|
2207 |
+
0.0,
|
2208 |
+
0.0,
|
2209 |
+
0.0016465834341943264,
|
2210 |
+
0.5260950326919556
|
2211 |
+
],
|
2212 |
+
"std": [
|
2213 |
+
0.46348854899406433,
|
2214 |
+
0.41240164637565613,
|
2215 |
+
0.41186293959617615,
|
2216 |
+
0.0,
|
2217 |
+
0.0,
|
2218 |
+
0.0578608438372612,
|
2219 |
+
0.49893733859062195
|
2220 |
+
],
|
2221 |
+
"max": [
|
2222 |
+
1.0,
|
2223 |
+
1.0,
|
2224 |
+
1.0,
|
2225 |
+
0.0,
|
2226 |
+
0.0,
|
2227 |
+
0.375,
|
2228 |
+
1.0
|
2229 |
+
],
|
2230 |
+
"min": [
|
2231 |
+
-1.0,
|
2232 |
+
-1.0,
|
2233 |
+
-1.0,
|
2234 |
+
0.0,
|
2235 |
+
0.0,
|
2236 |
+
-0.375,
|
2237 |
+
0.0
|
2238 |
+
],
|
2239 |
+
"q01": [
|
2240 |
+
-1.0,
|
2241 |
+
-0.9828571677207947,
|
2242 |
+
-0.6000000238418579,
|
2243 |
+
0.0,
|
2244 |
+
0.0,
|
2245 |
+
-0.17249999940395355,
|
2246 |
+
0.0
|
2247 |
+
],
|
2248 |
+
"q99": [
|
2249 |
+
1.0,
|
2250 |
+
0.9457142949104309,
|
2251 |
+
1.0,
|
2252 |
+
0.0,
|
2253 |
+
0.0,
|
2254 |
+
0.17892856895923615,
|
2255 |
+
1.0
|
2256 |
+
],
|
2257 |
+
"mask": [
|
2258 |
+
true,
|
2259 |
+
true,
|
2260 |
+
true,
|
2261 |
+
true,
|
2262 |
+
true,
|
2263 |
+
true,
|
2264 |
+
false
|
2265 |
+
]
|
2266 |
+
},
|
2267 |
+
"proprio": {
|
2268 |
+
"mean": [
|
2269 |
+
0.0,
|
2270 |
+
0.0,
|
2271 |
+
0.0,
|
2272 |
+
0.0,
|
2273 |
+
0.0,
|
2274 |
+
0.0,
|
2275 |
+
0.0
|
2276 |
+
],
|
2277 |
+
"std": [
|
2278 |
+
0.0,
|
2279 |
+
0.0,
|
2280 |
+
0.0,
|
2281 |
+
0.0,
|
2282 |
+
0.0,
|
2283 |
+
0.0,
|
2284 |
+
0.0
|
2285 |
+
],
|
2286 |
+
"max": [
|
2287 |
+
0.0,
|
2288 |
+
0.0,
|
2289 |
+
0.0,
|
2290 |
+
0.0,
|
2291 |
+
0.0,
|
2292 |
+
0.0,
|
2293 |
+
0.0
|
2294 |
+
],
|
2295 |
+
"min": [
|
2296 |
+
0.0,
|
2297 |
+
0.0,
|
2298 |
+
0.0,
|
2299 |
+
0.0,
|
2300 |
+
0.0,
|
2301 |
+
0.0,
|
2302 |
+
0.0
|
2303 |
+
],
|
2304 |
+
"q01": [
|
2305 |
+
0.0,
|
2306 |
+
0.0,
|
2307 |
+
0.0,
|
2308 |
+
0.0,
|
2309 |
+
0.0,
|
2310 |
+
0.0,
|
2311 |
+
0.0
|
2312 |
+
],
|
2313 |
+
"q99": [
|
2314 |
+
0.0,
|
2315 |
+
0.0,
|
2316 |
+
0.0,
|
2317 |
+
0.0,
|
2318 |
+
0.0,
|
2319 |
+
0.0,
|
2320 |
+
0.0
|
2321 |
+
]
|
2322 |
+
},
|
2323 |
+
"num_transitions": 353094,
|
2324 |
+
"num_trajectories": 240
|
2325 |
+
},
|
2326 |
+
"austin_sirius_dataset_converted_externally_to_rlds/0.1.0": {
|
2327 |
+
"action": {
|
2328 |
+
"mean": [
|
2329 |
+
0.077476866543293,
|
2330 |
+
0.031955525279045105,
|
2331 |
+
0.04244735836982727,
|
2332 |
+
0.0,
|
2333 |
+
0.0,
|
2334 |
+
-0.01603454165160656,
|
2335 |
+
0.43260180950164795
|
2336 |
+
],
|
2337 |
+
"std": [
|
2338 |
+
0.3906330168247223,
|
2339 |
+
0.2998153865337372,
|
2340 |
+
0.2782270312309265,
|
2341 |
+
0.0,
|
2342 |
+
0.0,
|
2343 |
+
0.08120641857385635,
|
2344 |
+
0.49528202414512634
|
2345 |
+
],
|
2346 |
+
"max": [
|
2347 |
+
1.0002285242080688,
|
2348 |
+
0.960608720779419,
|
2349 |
+
1.105179786682129,
|
2350 |
+
0.0,
|
2351 |
+
0.0,
|
2352 |
+
0.341785728931427,
|
2353 |
+
1.0
|
2354 |
+
],
|
2355 |
+
"min": [
|
2356 |
+
-1.0183025598526,
|
2357 |
+
-0.9800000190734863,
|
2358 |
+
-0.9774575233459473,
|
2359 |
+
0.0,
|
2360 |
+
0.0,
|
2361 |
+
-0.34607142210006714,
|
2362 |
+
0.0
|
2363 |
+
],
|
2364 |
+
"q01": [
|
2365 |
+
-0.780905865430832,
|
2366 |
+
-0.5667179036140442,
|
2367 |
+
-0.5254343223571777,
|
2368 |
+
0.0,
|
2369 |
+
0.0,
|
2370 |
+
-0.28495091378688814,
|
2371 |
+
0.0
|
2372 |
+
],
|
2373 |
+
"q99": [
|
2374 |
+
0.9569637751579284,
|
2375 |
+
0.6971374487876891,
|
2376 |
+
0.8124888157844541,
|
2377 |
+
0.0,
|
2378 |
+
0.0,
|
2379 |
+
0.1971428543329239,
|
2380 |
+
1.0
|
2381 |
+
],
|
2382 |
+
"mask": [
|
2383 |
+
true,
|
2384 |
+
true,
|
2385 |
+
true,
|
2386 |
+
true,
|
2387 |
+
true,
|
2388 |
+
true,
|
2389 |
+
false
|
2390 |
+
]
|
2391 |
+
},
|
2392 |
+
"proprio": {
|
2393 |
+
"mean": [
|
2394 |
+
0.0,
|
2395 |
+
0.0,
|
2396 |
+
0.0,
|
2397 |
+
0.0,
|
2398 |
+
0.0,
|
2399 |
+
0.0,
|
2400 |
+
0.0
|
2401 |
+
],
|
2402 |
+
"std": [
|
2403 |
+
0.0,
|
2404 |
+
0.0,
|
2405 |
+
0.0,
|
2406 |
+
0.0,
|
2407 |
+
0.0,
|
2408 |
+
0.0,
|
2409 |
+
0.0
|
2410 |
+
],
|
2411 |
+
"max": [
|
2412 |
+
0.0,
|
2413 |
+
0.0,
|
2414 |
+
0.0,
|
2415 |
+
0.0,
|
2416 |
+
0.0,
|
2417 |
+
0.0,
|
2418 |
+
0.0
|
2419 |
+
],
|
2420 |
+
"min": [
|
2421 |
+
0.0,
|
2422 |
+
0.0,
|
2423 |
+
0.0,
|
2424 |
+
0.0,
|
2425 |
+
0.0,
|
2426 |
+
0.0,
|
2427 |
+
0.0
|
2428 |
+
],
|
2429 |
+
"q01": [
|
2430 |
+
0.0,
|
2431 |
+
0.0,
|
2432 |
+
0.0,
|
2433 |
+
0.0,
|
2434 |
+
0.0,
|
2435 |
+
0.0,
|
2436 |
+
0.0
|
2437 |
+
],
|
2438 |
+
"q99": [
|
2439 |
+
0.0,
|
2440 |
+
0.0,
|
2441 |
+
0.0,
|
2442 |
+
0.0,
|
2443 |
+
0.0,
|
2444 |
+
0.0,
|
2445 |
+
0.0
|
2446 |
+
]
|
2447 |
+
},
|
2448 |
+
"num_transitions": 279939,
|
2449 |
+
"num_trajectories": 559
|
2450 |
+
},
|
2451 |
+
"dlr_edan_shared_control_converted_externally_to_rlds/0.1.0": {
|
2452 |
+
"action": {
|
2453 |
+
"mean": [
|
2454 |
+
0.0066478196531534195,
|
2455 |
+
-0.0007657355745323002,
|
2456 |
+
0.006522845011204481,
|
2457 |
+
0.0011679773451760411,
|
2458 |
+
-0.006395624950528145,
|
2459 |
+
-0.011903021484613419,
|
2460 |
+
0.6985887289047241
|
2461 |
+
],
|
2462 |
+
"std": [
|
2463 |
+
0.021393585950136185,
|
2464 |
+
0.018142299726605415,
|
2465 |
+
0.03374377265572548,
|
2466 |
+
0.01743541844189167,
|
2467 |
+
0.03394372761249542,
|
2468 |
+
0.04641878604888916,
|
2469 |
+
0.45885783433914185
|
2470 |
+
],
|
2471 |
+
"max": [
|
2472 |
+
0.18991442024707794,
|
2473 |
+
0.0739002525806427,
|
2474 |
+
0.18064819276332855,
|
2475 |
+
0.0866486132144928,
|
2476 |
+
0.13464981317520142,
|
2477 |
+
0.16910280287265778,
|
2478 |
+
1.0
|
2479 |
+
],
|
2480 |
+
"min": [
|
2481 |
+
-0.10054297000169754,
|
2482 |
+
-0.08427435159683228,
|
2483 |
+
-0.13533438742160797,
|
2484 |
+
-0.17556548118591309,
|
2485 |
+
-0.18485672771930695,
|
2486 |
+
-0.2680685818195343,
|
2487 |
+
0.0
|
2488 |
+
],
|
2489 |
+
"q01": [
|
2490 |
+
-0.02987122368067503,
|
2491 |
+
-0.06013262912631035,
|
2492 |
+
-0.08286409199237824,
|
2493 |
+
-0.05924444157630205,
|
2494 |
+
-0.15986866518855095,
|
2495 |
+
-0.15636983573436739,
|
2496 |
+
0.0
|
2497 |
+
],
|
2498 |
+
"q99": [
|
2499 |
+
0.08832092039287087,
|
2500 |
+
0.042126184627413736,
|
2501 |
+
0.11311905644834042,
|
2502 |
+
0.0643695573508739,
|
2503 |
+
0.03941855944693088,
|
2504 |
+
0.156646853685379,
|
2505 |
+
1.0
|
2506 |
+
],
|
2507 |
+
"mask": [
|
2508 |
+
true,
|
2509 |
+
true,
|
2510 |
+
true,
|
2511 |
+
true,
|
2512 |
+
true,
|
2513 |
+
true,
|
2514 |
+
false
|
2515 |
+
]
|
2516 |
+
},
|
2517 |
+
"proprio": {
|
2518 |
+
"mean": [
|
2519 |
+
0.0,
|
2520 |
+
0.0,
|
2521 |
+
0.0,
|
2522 |
+
0.0,
|
2523 |
+
0.0,
|
2524 |
+
0.0,
|
2525 |
+
0.0
|
2526 |
+
],
|
2527 |
+
"std": [
|
2528 |
+
0.0,
|
2529 |
+
0.0,
|
2530 |
+
0.0,
|
2531 |
+
0.0,
|
2532 |
+
0.0,
|
2533 |
+
0.0,
|
2534 |
+
0.0
|
2535 |
+
],
|
2536 |
+
"max": [
|
2537 |
+
0.0,
|
2538 |
+
0.0,
|
2539 |
+
0.0,
|
2540 |
+
0.0,
|
2541 |
+
0.0,
|
2542 |
+
0.0,
|
2543 |
+
0.0
|
2544 |
+
],
|
2545 |
+
"min": [
|
2546 |
+
0.0,
|
2547 |
+
0.0,
|
2548 |
+
0.0,
|
2549 |
+
0.0,
|
2550 |
+
0.0,
|
2551 |
+
0.0,
|
2552 |
+
0.0
|
2553 |
+
],
|
2554 |
+
"q01": [
|
2555 |
+
0.0,
|
2556 |
+
0.0,
|
2557 |
+
0.0,
|
2558 |
+
0.0,
|
2559 |
+
0.0,
|
2560 |
+
0.0,
|
2561 |
+
0.0
|
2562 |
+
],
|
2563 |
+
"q99": [
|
2564 |
+
0.0,
|
2565 |
+
0.0,
|
2566 |
+
0.0,
|
2567 |
+
0.0,
|
2568 |
+
0.0,
|
2569 |
+
0.0,
|
2570 |
+
0.0
|
2571 |
+
]
|
2572 |
+
},
|
2573 |
+
"num_transitions": 8928,
|
2574 |
+
"num_trajectories": 104
|
2575 |
+
},
|
2576 |
+
"iamlab_cmu_pickup_insert_converted_externally_to_rlds/0.1.0": {
|
2577 |
+
"action": {
|
2578 |
+
"mean": [
|
2579 |
+
0.5274373292922974,
|
2580 |
+
0.028582017868757248,
|
2581 |
+
0.18712472915649414,
|
2582 |
+
1.2339569330215454,
|
2583 |
+
0.03226622939109802,
|
2584 |
+
-1.4199472665786743,
|
2585 |
+
0.5550631880760193
|
2586 |
+
],
|
2587 |
+
"std": [
|
2588 |
+
0.08108346909284592,
|
2589 |
+
0.1116756722331047,
|
2590 |
+
0.07747555524110794,
|
2591 |
+
2.8737244606018066,
|
2592 |
+
0.02774704433977604,
|
2593 |
+
2.7678685188293457,
|
2594 |
+
0.4969509243965149
|
2595 |
+
],
|
2596 |
+
"max": [
|
2597 |
+
0.6634981632232666,
|
2598 |
+
0.23428471386432648,
|
2599 |
+
0.4308285415172577,
|
2600 |
+
3.1415927410125732,
|
2601 |
+
0.13647015392780304,
|
2602 |
+
3.141592502593994,
|
2603 |
+
1.0
|
2604 |
+
],
|
2605 |
+
"min": [
|
2606 |
+
0.3071657121181488,
|
2607 |
+
-0.29754969477653503,
|
2608 |
+
0.06578229367733002,
|
2609 |
+
-3.1415927410125732,
|
2610 |
+
-0.04584203287959099,
|
2611 |
+
-3.141592502593994,
|
2612 |
+
0.0
|
2613 |
+
],
|
2614 |
+
"q01": [
|
2615 |
+
0.3148897051811218,
|
2616 |
+
-0.20317550599575043,
|
2617 |
+
0.06785467118024827,
|
2618 |
+
-3.140952730178833,
|
2619 |
+
-0.029743434861302376,
|
2620 |
+
-3.141091251373291,
|
2621 |
+
0.0
|
2622 |
+
],
|
2623 |
+
"q99": [
|
2624 |
+
0.6472805738449097,
|
2625 |
+
0.20846802592277527,
|
2626 |
+
0.36855655312538155,
|
2627 |
+
3.1409926891326903,
|
2628 |
+
0.11424950212240226,
|
2629 |
+
3.1410969257354737,
|
2630 |
+
1.0
|
2631 |
+
],
|
2632 |
+
"mask": [
|
2633 |
+
true,
|
2634 |
+
true,
|
2635 |
+
true,
|
2636 |
+
true,
|
2637 |
+
true,
|
2638 |
+
true,
|
2639 |
+
false
|
2640 |
+
]
|
2641 |
+
},
|
2642 |
+
"proprio": {
|
2643 |
+
"mean": [
|
2644 |
+
0.0,
|
2645 |
+
0.0,
|
2646 |
+
0.0,
|
2647 |
+
0.0,
|
2648 |
+
0.0,
|
2649 |
+
0.0,
|
2650 |
+
0.0
|
2651 |
+
],
|
2652 |
+
"std": [
|
2653 |
+
0.0,
|
2654 |
+
0.0,
|
2655 |
+
0.0,
|
2656 |
+
0.0,
|
2657 |
+
0.0,
|
2658 |
+
0.0,
|
2659 |
+
0.0
|
2660 |
+
],
|
2661 |
+
"max": [
|
2662 |
+
0.0,
|
2663 |
+
0.0,
|
2664 |
+
0.0,
|
2665 |
+
0.0,
|
2666 |
+
0.0,
|
2667 |
+
0.0,
|
2668 |
+
0.0
|
2669 |
+
],
|
2670 |
+
"min": [
|
2671 |
+
0.0,
|
2672 |
+
0.0,
|
2673 |
+
0.0,
|
2674 |
+
0.0,
|
2675 |
+
0.0,
|
2676 |
+
0.0,
|
2677 |
+
0.0
|
2678 |
+
],
|
2679 |
+
"q01": [
|
2680 |
+
0.0,
|
2681 |
+
0.0,
|
2682 |
+
0.0,
|
2683 |
+
0.0,
|
2684 |
+
0.0,
|
2685 |
+
0.0,
|
2686 |
+
0.0
|
2687 |
+
],
|
2688 |
+
"q99": [
|
2689 |
+
0.0,
|
2690 |
+
0.0,
|
2691 |
+
0.0,
|
2692 |
+
0.0,
|
2693 |
+
0.0,
|
2694 |
+
0.0,
|
2695 |
+
0.0
|
2696 |
+
]
|
2697 |
+
},
|
2698 |
+
"num_transitions": 146241,
|
2699 |
+
"num_trajectories": 631
|
2700 |
+
},
|
2701 |
+
"utaustin_mutex/0.1.0": {
|
2702 |
+
"action": {
|
2703 |
+
"mean": [
|
2704 |
+
0.06176406517624855,
|
2705 |
+
-0.005005490034818649,
|
2706 |
+
0.10216782987117767,
|
2707 |
+
-0.03314131125807762,
|
2708 |
+
0.013895022682845592,
|
2709 |
+
-0.011317633092403412,
|
2710 |
+
0.5038976669311523
|
2711 |
+
],
|
2712 |
+
"std": [
|
2713 |
+
0.187501460313797,
|
2714 |
+
0.4468473196029663,
|
2715 |
+
0.3792876601219177,
|
2716 |
+
0.14097853004932404,
|
2717 |
+
0.06453699618577957,
|
2718 |
+
0.11765265464782715,
|
2719 |
+
0.501045286655426
|
2720 |
+
],
|
2721 |
+
"max": [
|
2722 |
+
1.0,
|
2723 |
+
1.0,
|
2724 |
+
1.0,
|
2725 |
+
0.375,
|
2726 |
+
0.375,
|
2727 |
+
0.375,
|
2728 |
+
1.0
|
2729 |
+
],
|
2730 |
+
"min": [
|
2731 |
+
-1.0,
|
2732 |
+
-1.0,
|
2733 |
+
-1.0,
|
2734 |
+
-0.375,
|
2735 |
+
-0.375,
|
2736 |
+
-0.375,
|
2737 |
+
0.0
|
2738 |
+
],
|
2739 |
+
"q01": [
|
2740 |
+
-0.4285714328289032,
|
2741 |
+
-0.9800000190734863,
|
2742 |
+
-0.5571428537368774,
|
2743 |
+
-0.375,
|
2744 |
+
-0.15642857551574707,
|
2745 |
+
-0.335357129573822,
|
2746 |
+
0.0
|
2747 |
+
],
|
2748 |
+
"q99": [
|
2749 |
+
0.5914285778999329,
|
2750 |
+
0.9714285731315613,
|
2751 |
+
1.0,
|
2752 |
+
0.3278571367263794,
|
2753 |
+
0.207857146859169,
|
2754 |
+
0.25607141852378845,
|
2755 |
+
1.0
|
2756 |
+
],
|
2757 |
+
"mask": [
|
2758 |
+
true,
|
2759 |
+
true,
|
2760 |
+
true,
|
2761 |
+
true,
|
2762 |
+
true,
|
2763 |
+
true,
|
2764 |
+
false
|
2765 |
+
]
|
2766 |
+
},
|
2767 |
+
"proprio": {
|
2768 |
+
"mean": [
|
2769 |
+
0.0,
|
2770 |
+
0.0,
|
2771 |
+
0.0,
|
2772 |
+
0.0,
|
2773 |
+
0.0,
|
2774 |
+
0.0,
|
2775 |
+
0.0
|
2776 |
+
],
|
2777 |
+
"std": [
|
2778 |
+
0.0,
|
2779 |
+
0.0,
|
2780 |
+
0.0,
|
2781 |
+
0.0,
|
2782 |
+
0.0,
|
2783 |
+
0.0,
|
2784 |
+
0.0
|
2785 |
+
],
|
2786 |
+
"max": [
|
2787 |
+
0.0,
|
2788 |
+
0.0,
|
2789 |
+
0.0,
|
2790 |
+
0.0,
|
2791 |
+
0.0,
|
2792 |
+
0.0,
|
2793 |
+
0.0
|
2794 |
+
],
|
2795 |
+
"min": [
|
2796 |
+
0.0,
|
2797 |
+
0.0,
|
2798 |
+
0.0,
|
2799 |
+
0.0,
|
2800 |
+
0.0,
|
2801 |
+
0.0,
|
2802 |
+
0.0
|
2803 |
+
],
|
2804 |
+
"q01": [
|
2805 |
+
0.0,
|
2806 |
+
0.0,
|
2807 |
+
0.0,
|
2808 |
+
0.0,
|
2809 |
+
0.0,
|
2810 |
+
0.0,
|
2811 |
+
0.0
|
2812 |
+
],
|
2813 |
+
"q99": [
|
2814 |
+
0.0,
|
2815 |
+
0.0,
|
2816 |
+
0.0,
|
2817 |
+
0.0,
|
2818 |
+
0.0,
|
2819 |
+
0.0,
|
2820 |
+
0.0
|
2821 |
+
]
|
2822 |
+
},
|
2823 |
+
"num_transitions": 361883,
|
2824 |
+
"num_trajectories": 1500
|
2825 |
+
},
|
2826 |
+
"berkeley_fanuc_manipulation/0.1.0": {
|
2827 |
+
"action": {
|
2828 |
+
"mean": [
|
2829 |
+
0.0007744057802483439,
|
2830 |
+
-0.00031240080716088414,
|
2831 |
+
-0.0015001941937953234,
|
2832 |
+
-0.0007515158504247665,
|
2833 |
+
-0.00015832878125365824,
|
2834 |
+
0.00014327642566058785,
|
2835 |
+
0.699295699596405
|
2836 |
+
],
|
2837 |
+
"std": [
|
2838 |
+
0.0034070133697241545,
|
2839 |
+
0.00499219074845314,
|
2840 |
+
0.005344326142221689,
|
2841 |
+
0.007599010597914457,
|
2842 |
+
0.004081932827830315,
|
2843 |
+
0.008568963967263699,
|
2844 |
+
0.45868709683418274
|
2845 |
+
],
|
2846 |
+
"max": [
|
2847 |
+
0.009999999776482582,
|
2848 |
+
0.009999999776482582,
|
2849 |
+
0.009999999776482582,
|
2850 |
+
0.03490658476948738,
|
2851 |
+
0.03490658476948738,
|
2852 |
+
0.03490658476948738,
|
2853 |
+
1.0
|
2854 |
+
],
|
2855 |
+
"min": [
|
2856 |
+
-0.009999999776482582,
|
2857 |
+
-0.009999999776482582,
|
2858 |
+
-0.009999999776482582,
|
2859 |
+
-0.03490658476948738,
|
2860 |
+
-0.03490658476948738,
|
2861 |
+
-0.03490658476948738,
|
2862 |
+
0.0
|
2863 |
+
],
|
2864 |
+
"q01": [
|
2865 |
+
-0.009999999776482582,
|
2866 |
+
-0.009999999776482582,
|
2867 |
+
-0.009999999776482582,
|
2868 |
+
-0.03490658476948738,
|
2869 |
+
0.0,
|
2870 |
+
-0.03490658476948738,
|
2871 |
+
0.0
|
2872 |
+
],
|
2873 |
+
"q99": [
|
2874 |
+
0.009999999776482582,
|
2875 |
+
0.009999999776482582,
|
2876 |
+
0.009999999776482582,
|
2877 |
+
0.03490658476948738,
|
2878 |
+
0.0,
|
2879 |
+
0.03490658476948738,
|
2880 |
+
1.0
|
2881 |
+
],
|
2882 |
+
"mask": [
|
2883 |
+
true,
|
2884 |
+
true,
|
2885 |
+
true,
|
2886 |
+
true,
|
2887 |
+
true,
|
2888 |
+
true,
|
2889 |
+
false
|
2890 |
+
]
|
2891 |
+
},
|
2892 |
+
"proprio": {
|
2893 |
+
"mean": [
|
2894 |
+
0.0,
|
2895 |
+
0.0,
|
2896 |
+
0.0,
|
2897 |
+
0.0,
|
2898 |
+
0.0,
|
2899 |
+
0.0,
|
2900 |
+
0.0
|
2901 |
+
],
|
2902 |
+
"std": [
|
2903 |
+
0.0,
|
2904 |
+
0.0,
|
2905 |
+
0.0,
|
2906 |
+
0.0,
|
2907 |
+
0.0,
|
2908 |
+
0.0,
|
2909 |
+
0.0
|
2910 |
+
],
|
2911 |
+
"max": [
|
2912 |
+
0.0,
|
2913 |
+
0.0,
|
2914 |
+
0.0,
|
2915 |
+
0.0,
|
2916 |
+
0.0,
|
2917 |
+
0.0,
|
2918 |
+
0.0
|
2919 |
+
],
|
2920 |
+
"min": [
|
2921 |
+
0.0,
|
2922 |
+
0.0,
|
2923 |
+
0.0,
|
2924 |
+
0.0,
|
2925 |
+
0.0,
|
2926 |
+
0.0,
|
2927 |
+
0.0
|
2928 |
+
],
|
2929 |
+
"q01": [
|
2930 |
+
0.0,
|
2931 |
+
0.0,
|
2932 |
+
0.0,
|
2933 |
+
0.0,
|
2934 |
+
0.0,
|
2935 |
+
0.0,
|
2936 |
+
0.0
|
2937 |
+
],
|
2938 |
+
"q99": [
|
2939 |
+
0.0,
|
2940 |
+
0.0,
|
2941 |
+
0.0,
|
2942 |
+
0.0,
|
2943 |
+
0.0,
|
2944 |
+
0.0,
|
2945 |
+
0.0
|
2946 |
+
]
|
2947 |
+
},
|
2948 |
+
"num_transitions": 62613,
|
2949 |
+
"num_trajectories": 415
|
2950 |
+
},
|
2951 |
+
"cmu_stretch/0.1.0": {
|
2952 |
+
"action": {
|
2953 |
+
"mean": [
|
2954 |
+
0.0003630445571616292,
|
2955 |
+
0.0,
|
2956 |
+
0.0016466928645968437,
|
2957 |
+
0.0,
|
2958 |
+
0.0,
|
2959 |
+
0.0,
|
2960 |
+
0.3987048268318176
|
2961 |
+
],
|
2962 |
+
"std": [
|
2963 |
+
0.004081855062395334,
|
2964 |
+
0.0,
|
2965 |
+
0.003774340031668544,
|
2966 |
+
0.0,
|
2967 |
+
0.0,
|
2968 |
+
0.0,
|
2969 |
+
0.489638090133667
|
2970 |
+
],
|
2971 |
+
"max": [
|
2972 |
+
0.02338407188653946,
|
2973 |
+
0.0,
|
2974 |
+
0.023404927924275398,
|
2975 |
+
0.0,
|
2976 |
+
0.0,
|
2977 |
+
0.0,
|
2978 |
+
1.0
|
2979 |
+
],
|
2980 |
+
"min": [
|
2981 |
+
-0.019353797659277916,
|
2982 |
+
0.0,
|
2983 |
+
-0.02019215188920498,
|
2984 |
+
0.0,
|
2985 |
+
0.0,
|
2986 |
+
0.0,
|
2987 |
+
0.0
|
2988 |
+
],
|
2989 |
+
"q01": [
|
2990 |
+
-0.011175686959177256,
|
2991 |
+
0.0,
|
2992 |
+
-0.0032206363626755773,
|
2993 |
+
0.0,
|
2994 |
+
0.0,
|
2995 |
+
0.0,
|
2996 |
+
0.0
|
2997 |
+
],
|
2998 |
+
"q99": [
|
2999 |
+
0.014501785952597848,
|
3000 |
+
0.0,
|
3001 |
+
0.015056106168776728,
|
3002 |
+
0.0,
|
3003 |
+
0.0,
|
3004 |
+
0.0,
|
3005 |
+
1.0
|
3006 |
+
],
|
3007 |
+
"mask": [
|
3008 |
+
true,
|
3009 |
+
true,
|
3010 |
+
true,
|
3011 |
+
true,
|
3012 |
+
true,
|
3013 |
+
true,
|
3014 |
+
false
|
3015 |
+
]
|
3016 |
+
},
|
3017 |
+
"proprio": {
|
3018 |
+
"mean": [
|
3019 |
+
0.0,
|
3020 |
+
0.0,
|
3021 |
+
0.0,
|
3022 |
+
0.0,
|
3023 |
+
0.0,
|
3024 |
+
0.0,
|
3025 |
+
0.0
|
3026 |
+
],
|
3027 |
+
"std": [
|
3028 |
+
0.0,
|
3029 |
+
0.0,
|
3030 |
+
0.0,
|
3031 |
+
0.0,
|
3032 |
+
0.0,
|
3033 |
+
0.0,
|
3034 |
+
0.0
|
3035 |
+
],
|
3036 |
+
"max": [
|
3037 |
+
0.0,
|
3038 |
+
0.0,
|
3039 |
+
0.0,
|
3040 |
+
0.0,
|
3041 |
+
0.0,
|
3042 |
+
0.0,
|
3043 |
+
0.0
|
3044 |
+
],
|
3045 |
+
"min": [
|
3046 |
+
0.0,
|
3047 |
+
0.0,
|
3048 |
+
0.0,
|
3049 |
+
0.0,
|
3050 |
+
0.0,
|
3051 |
+
0.0,
|
3052 |
+
0.0
|
3053 |
+
],
|
3054 |
+
"q01": [
|
3055 |
+
0.0,
|
3056 |
+
0.0,
|
3057 |
+
0.0,
|
3058 |
+
0.0,
|
3059 |
+
0.0,
|
3060 |
+
0.0,
|
3061 |
+
0.0
|
3062 |
+
],
|
3063 |
+
"q99": [
|
3064 |
+
0.0,
|
3065 |
+
0.0,
|
3066 |
+
0.0,
|
3067 |
+
0.0,
|
3068 |
+
0.0,
|
3069 |
+
0.0,
|
3070 |
+
0.0
|
3071 |
+
]
|
3072 |
+
},
|
3073 |
+
"num_transitions": 25016,
|
3074 |
+
"num_trajectories": 135
|
3075 |
+
},
|
3076 |
+
"bc_z/0.1.0": {
|
3077 |
+
"action": {
|
3078 |
+
"mean": [
|
3079 |
+
-0.009958645328879356,
|
3080 |
+
0.0008958434336818755,
|
3081 |
+
0.00499522453173995,
|
3082 |
+
0.000297540333122015,
|
3083 |
+
-0.008734511211514473,
|
3084 |
+
-0.03068969026207924,
|
3085 |
+
0.8344562649726868
|
3086 |
+
],
|
3087 |
+
"std": [
|
3088 |
+
0.030533093959093094,
|
3089 |
+
0.0231416504830122,
|
3090 |
+
0.020642085000872612,
|
3091 |
+
0.04156165570020676,
|
3092 |
+
0.04643021523952484,
|
3093 |
+
0.07697845250368118,
|
3094 |
+
0.36111101508140564
|
3095 |
+
],
|
3096 |
+
"max": [
|
3097 |
+
0.2165454924106598,
|
3098 |
+
0.1251407265663147,
|
3099 |
+
0.10772687941789627,
|
3100 |
+
0.33544227480888367,
|
3101 |
+
0.28117990493774414,
|
3102 |
+
0.40614867210388184,
|
3103 |
+
1.0
|
3104 |
+
],
|
3105 |
+
"min": [
|
3106 |
+
-0.1677047461271286,
|
3107 |
+
-0.14630407094955444,
|
3108 |
+
-0.10066790133714676,
|
3109 |
+
-0.29421567916870117,
|
3110 |
+
-0.32101404666900635,
|
3111 |
+
-0.4635624885559082,
|
3112 |
+
0.0
|
3113 |
+
],
|
3114 |
+
"q01": [
|
3115 |
+
-0.09220654994249344,
|
3116 |
+
-0.06456145539879798,
|
3117 |
+
-0.049121275544166565,
|
3118 |
+
-0.11594625547528267,
|
3119 |
+
-0.14152548640966414,
|
3120 |
+
-0.2251061636209488,
|
3121 |
+
0.0
|
3122 |
+
],
|
3123 |
+
"q99": [
|
3124 |
+
0.07628866866230968,
|
3125 |
+
0.058019736707210584,
|
3126 |
+
0.052540797740221024,
|
3127 |
+
0.11740604028105736,
|
3128 |
+
0.11703975558280955,
|
3129 |
+
0.16729306846857078,
|
3130 |
+
1.0
|
3131 |
+
],
|
3132 |
+
"mask": [
|
3133 |
+
true,
|
3134 |
+
true,
|
3135 |
+
true,
|
3136 |
+
true,
|
3137 |
+
true,
|
3138 |
+
true,
|
3139 |
+
false
|
3140 |
+
]
|
3141 |
+
},
|
3142 |
+
"proprio": {
|
3143 |
+
"mean": [
|
3144 |
+
0.0,
|
3145 |
+
0.0,
|
3146 |
+
0.0,
|
3147 |
+
0.0,
|
3148 |
+
0.0,
|
3149 |
+
0.0,
|
3150 |
+
0.0
|
3151 |
+
],
|
3152 |
+
"std": [
|
3153 |
+
0.0,
|
3154 |
+
0.0,
|
3155 |
+
0.0,
|
3156 |
+
0.0,
|
3157 |
+
0.0,
|
3158 |
+
0.0,
|
3159 |
+
0.0
|
3160 |
+
],
|
3161 |
+
"max": [
|
3162 |
+
0.0,
|
3163 |
+
0.0,
|
3164 |
+
0.0,
|
3165 |
+
0.0,
|
3166 |
+
0.0,
|
3167 |
+
0.0,
|
3168 |
+
0.0
|
3169 |
+
],
|
3170 |
+
"min": [
|
3171 |
+
0.0,
|
3172 |
+
0.0,
|
3173 |
+
0.0,
|
3174 |
+
0.0,
|
3175 |
+
0.0,
|
3176 |
+
0.0,
|
3177 |
+
0.0
|
3178 |
+
],
|
3179 |
+
"q01": [
|
3180 |
+
0.0,
|
3181 |
+
0.0,
|
3182 |
+
0.0,
|
3183 |
+
0.0,
|
3184 |
+
0.0,
|
3185 |
+
0.0,
|
3186 |
+
0.0
|
3187 |
+
],
|
3188 |
+
"q99": [
|
3189 |
+
0.0,
|
3190 |
+
0.0,
|
3191 |
+
0.0,
|
3192 |
+
0.0,
|
3193 |
+
0.0,
|
3194 |
+
0.0,
|
3195 |
+
0.0
|
3196 |
+
]
|
3197 |
+
},
|
3198 |
+
"num_transitions": 6015535,
|
3199 |
+
"num_trajectories": 43264
|
3200 |
+
},
|
3201 |
+
"fmb_dataset/1.0.0": {
|
3202 |
+
"action": {
|
3203 |
+
"mean": [
|
3204 |
+
0.05902976542711258,
|
3205 |
+
-0.06476633995771408,
|
3206 |
+
-0.09787469357252121,
|
3207 |
+
0.004325387068092823,
|
3208 |
+
0.00028963759541511536,
|
3209 |
+
-0.04457257315516472,
|
3210 |
+
0.7336440086364746
|
3211 |
+
],
|
3212 |
+
"std": [
|
3213 |
+
0.28809186816215515,
|
3214 |
+
0.2820416986942291,
|
3215 |
+
0.4626740515232086,
|
3216 |
+
0.3266514539718628,
|
3217 |
+
0.10842999070882797,
|
3218 |
+
0.34400978684425354,
|
3219 |
+
0.4435289800167084
|
3220 |
+
],
|
3221 |
+
"max": [
|
3222 |
+
1.399999976158142,
|
3223 |
+
1.0,
|
3224 |
+
1.399999976158142,
|
3225 |
+
1.0,
|
3226 |
+
1.0,
|
3227 |
+
1.0,
|
3228 |
+
1.0
|
3229 |
+
],
|
3230 |
+
"min": [
|
3231 |
+
-1.399999976158142,
|
3232 |
+
-1.399999976158142,
|
3233 |
+
-1.0,
|
3234 |
+
-1.0,
|
3235 |
+
-1.0,
|
3236 |
+
-1.0,
|
3237 |
+
0.0
|
3238 |
+
],
|
3239 |
+
"q01": [
|
3240 |
+
-0.8257142901420593,
|
3241 |
+
-1.399999976158142,
|
3242 |
+
-1.0,
|
3243 |
+
-1.0,
|
3244 |
+
-0.3028571307659149,
|
3245 |
+
-1.0,
|
3246 |
+
0.0
|
3247 |
+
],
|
3248 |
+
"q99": [
|
3249 |
+
1.0,
|
3250 |
+
0.5257142782211304,
|
3251 |
+
1.0,
|
3252 |
+
1.0,
|
3253 |
+
0.3400000035762787,
|
3254 |
+
1.0,
|
3255 |
+
1.0
|
3256 |
+
],
|
3257 |
+
"mask": [
|
3258 |
+
true,
|
3259 |
+
true,
|
3260 |
+
true,
|
3261 |
+
true,
|
3262 |
+
true,
|
3263 |
+
true,
|
3264 |
+
false
|
3265 |
+
]
|
3266 |
+
},
|
3267 |
+
"proprio": {
|
3268 |
+
"mean": [
|
3269 |
+
0.0,
|
3270 |
+
0.0,
|
3271 |
+
0.0,
|
3272 |
+
0.0,
|
3273 |
+
0.0,
|
3274 |
+
0.0,
|
3275 |
+
0.0
|
3276 |
+
],
|
3277 |
+
"std": [
|
3278 |
+
0.0,
|
3279 |
+
0.0,
|
3280 |
+
0.0,
|
3281 |
+
0.0,
|
3282 |
+
0.0,
|
3283 |
+
0.0,
|
3284 |
+
0.0
|
3285 |
+
],
|
3286 |
+
"max": [
|
3287 |
+
0.0,
|
3288 |
+
0.0,
|
3289 |
+
0.0,
|
3290 |
+
0.0,
|
3291 |
+
0.0,
|
3292 |
+
0.0,
|
3293 |
+
0.0
|
3294 |
+
],
|
3295 |
+
"min": [
|
3296 |
+
0.0,
|
3297 |
+
0.0,
|
3298 |
+
0.0,
|
3299 |
+
0.0,
|
3300 |
+
0.0,
|
3301 |
+
0.0,
|
3302 |
+
0.0
|
3303 |
+
],
|
3304 |
+
"q01": [
|
3305 |
+
0.0,
|
3306 |
+
0.0,
|
3307 |
+
0.0,
|
3308 |
+
0.0,
|
3309 |
+
0.0,
|
3310 |
+
0.0,
|
3311 |
+
0.0
|
3312 |
+
],
|
3313 |
+
"q99": [
|
3314 |
+
0.0,
|
3315 |
+
0.0,
|
3316 |
+
0.0,
|
3317 |
+
0.0,
|
3318 |
+
0.0,
|
3319 |
+
0.0,
|
3320 |
+
0.0
|
3321 |
+
]
|
3322 |
+
},
|
3323 |
+
"num_transitions": 1137459,
|
3324 |
+
"num_trajectories": 8612
|
3325 |
+
},
|
3326 |
+
"dobbe/0.0.1": {
|
3327 |
+
"action": {
|
3328 |
+
"mean": [
|
3329 |
+
-0.00011206958151888102,
|
3330 |
+
0.0011229681549593806,
|
3331 |
+
-0.00010193959315074608,
|
3332 |
+
-7.37128357286565e-05,
|
3333 |
+
-0.0006753374473191798,
|
3334 |
+
-5.664441778208129e-05,
|
3335 |
+
0.6318688988685608
|
3336 |
+
],
|
3337 |
+
"std": [
|
3338 |
+
0.042660679668188095,
|
3339 |
+
0.04428431764245033,
|
3340 |
+
0.12224890291690826,
|
3341 |
+
0.005388470832258463,
|
3342 |
+
0.011246936395764351,
|
3343 |
+
0.006288259290158749,
|
3344 |
+
0.3973240256309509
|
3345 |
+
],
|
3346 |
+
"max": [
|
3347 |
+
38.590423583984375,
|
3348 |
+
17.932697296142578,
|
3349 |
+
4.843764305114746,
|
3350 |
+
1.4372116327285767,
|
3351 |
+
0.4340403974056244,
|
3352 |
+
1.2057193517684937,
|
3353 |
+
0.9998947381973267
|
3354 |
+
],
|
3355 |
+
"min": [
|
3356 |
+
-5.700923442840576,
|
3357 |
+
-21.605947494506836,
|
3358 |
+
-123.72489929199219,
|
3359 |
+
-1.7229845523834229,
|
3360 |
+
-0.4998578727245331,
|
3361 |
+
-0.8867913484573364,
|
3362 |
+
1.4196479014572105e-06
|
3363 |
+
],
|
3364 |
+
"q01": [
|
3365 |
+
-0.01119564864784479,
|
3366 |
+
-0.014266146533191203,
|
3367 |
+
-0.0071747214533388615,
|
3368 |
+
-0.009444301575422287,
|
3369 |
+
-0.03990109823644161,
|
3370 |
+
-0.017422311007976532,
|
3371 |
+
4.003279136668425e-05
|
3372 |
+
],
|
3373 |
+
"q99": [
|
3374 |
+
0.01015154086053368,
|
3375 |
+
0.017181577533483497,
|
3376 |
+
0.007216989761218411,
|
3377 |
+
0.010380979906767595,
|
3378 |
+
0.03556173853576176,
|
3379 |
+
0.018032474815845446,
|
3380 |
+
0.9982578039169312
|
3381 |
+
],
|
3382 |
+
"mask": [
|
3383 |
+
true,
|
3384 |
+
true,
|
3385 |
+
true,
|
3386 |
+
true,
|
3387 |
+
true,
|
3388 |
+
true,
|
3389 |
+
false
|
3390 |
+
]
|
3391 |
+
},
|
3392 |
+
"proprio": {
|
3393 |
+
"mean": [
|
3394 |
+
0.0,
|
3395 |
+
0.0,
|
3396 |
+
0.0,
|
3397 |
+
0.0,
|
3398 |
+
0.0,
|
3399 |
+
0.0,
|
3400 |
+
0.0
|
3401 |
+
],
|
3402 |
+
"std": [
|
3403 |
+
0.0,
|
3404 |
+
0.0,
|
3405 |
+
0.0,
|
3406 |
+
0.0,
|
3407 |
+
0.0,
|
3408 |
+
0.0,
|
3409 |
+
0.0
|
3410 |
+
],
|
3411 |
+
"max": [
|
3412 |
+
0.0,
|
3413 |
+
0.0,
|
3414 |
+
0.0,
|
3415 |
+
0.0,
|
3416 |
+
0.0,
|
3417 |
+
0.0,
|
3418 |
+
0.0
|
3419 |
+
],
|
3420 |
+
"min": [
|
3421 |
+
0.0,
|
3422 |
+
0.0,
|
3423 |
+
0.0,
|
3424 |
+
0.0,
|
3425 |
+
0.0,
|
3426 |
+
0.0,
|
3427 |
+
0.0
|
3428 |
+
],
|
3429 |
+
"q01": [
|
3430 |
+
0.0,
|
3431 |
+
0.0,
|
3432 |
+
0.0,
|
3433 |
+
0.0,
|
3434 |
+
0.0,
|
3435 |
+
0.0,
|
3436 |
+
0.0
|
3437 |
+
],
|
3438 |
+
"q99": [
|
3439 |
+
0.0,
|
3440 |
+
0.0,
|
3441 |
+
0.0,
|
3442 |
+
0.0,
|
3443 |
+
0.0,
|
3444 |
+
0.0,
|
3445 |
+
0.0
|
3446 |
+
]
|
3447 |
+
},
|
3448 |
+
"num_transitions": 1139911,
|
3449 |
+
"num_trajectories": 5208
|
3450 |
+
},
|
3451 |
+
"droid/1.0.0": {
|
3452 |
+
"action": {
|
3453 |
+
"mean": [
|
3454 |
+
0.027425529435276985,
|
3455 |
+
-0.0026820411439985037,
|
3456 |
+
0.01595238223671913,
|
3457 |
+
0.0035501928068697453,
|
3458 |
+
-0.030532635748386383,
|
3459 |
+
-0.006685464642941952,
|
3460 |
+
0.5860344171524048
|
3461 |
+
],
|
3462 |
+
"std": [
|
3463 |
+
0.25387412309646606,
|
3464 |
+
0.18426834046840668,
|
3465 |
+
0.22532416880130768,
|
3466 |
+
0.21757009625434875,
|
3467 |
+
0.22572560608386993,
|
3468 |
+
0.2867794930934906,
|
3469 |
+
0.4287726879119873
|
3470 |
+
],
|
3471 |
+
"max": [
|
3472 |
+
0.9999998211860657,
|
3473 |
+
0.999991774559021,
|
3474 |
+
0.9999973177909851,
|
3475 |
+
0.9999874830245972,
|
3476 |
+
0.9999954104423523,
|
3477 |
+
0.9999998807907104,
|
3478 |
+
1.0
|
3479 |
+
],
|
3480 |
+
"min": [
|
3481 |
+
-0.9999999403953552,
|
3482 |
+
-0.9999951124191284,
|
3483 |
+
-0.9999960660934448,
|
3484 |
+
-0.9999980330467224,
|
3485 |
+
-0.9999982118606567,
|
3486 |
+
-0.9999998807907104,
|
3487 |
+
0.0
|
3488 |
+
],
|
3489 |
+
"q01": [
|
3490 |
+
-0.7776297926902771,
|
3491 |
+
-0.5803514122962952,
|
3492 |
+
-0.5795090794563293,
|
3493 |
+
-0.6464047729969025,
|
3494 |
+
-0.7041108310222626,
|
3495 |
+
-0.8895104378461838,
|
3496 |
+
0.0
|
3497 |
+
],
|
3498 |
+
"q99": [
|
3499 |
+
0.7597932070493698,
|
3500 |
+
0.5726242214441299,
|
3501 |
+
0.7351000607013702,
|
3502 |
+
0.6705610305070877,
|
3503 |
+
0.6464948207139969,
|
3504 |
+
0.8897542208433151,
|
3505 |
+
1.0
|
3506 |
+
],
|
3507 |
+
"mask": [
|
3508 |
+
true,
|
3509 |
+
true,
|
3510 |
+
true,
|
3511 |
+
true,
|
3512 |
+
true,
|
3513 |
+
true,
|
3514 |
+
false
|
3515 |
+
]
|
3516 |
+
},
|
3517 |
+
"proprio": {
|
3518 |
+
"mean": [
|
3519 |
+
0.0,
|
3520 |
+
0.0,
|
3521 |
+
0.0,
|
3522 |
+
0.0,
|
3523 |
+
0.0,
|
3524 |
+
0.0,
|
3525 |
+
0.0
|
3526 |
+
],
|
3527 |
+
"std": [
|
3528 |
+
0.0,
|
3529 |
+
0.0,
|
3530 |
+
0.0,
|
3531 |
+
0.0,
|
3532 |
+
0.0,
|
3533 |
+
0.0,
|
3534 |
+
0.0
|
3535 |
+
],
|
3536 |
+
"max": [
|
3537 |
+
0.0,
|
3538 |
+
0.0,
|
3539 |
+
0.0,
|
3540 |
+
0.0,
|
3541 |
+
0.0,
|
3542 |
+
0.0,
|
3543 |
+
0.0
|
3544 |
+
],
|
3545 |
+
"min": [
|
3546 |
+
0.0,
|
3547 |
+
0.0,
|
3548 |
+
0.0,
|
3549 |
+
0.0,
|
3550 |
+
0.0,
|
3551 |
+
0.0,
|
3552 |
+
0.0
|
3553 |
+
],
|
3554 |
+
"q01": [
|
3555 |
+
0.0,
|
3556 |
+
0.0,
|
3557 |
+
0.0,
|
3558 |
+
0.0,
|
3559 |
+
0.0,
|
3560 |
+
0.0,
|
3561 |
+
0.0
|
3562 |
+
],
|
3563 |
+
"q99": [
|
3564 |
+
0.0,
|
3565 |
+
0.0,
|
3566 |
+
0.0,
|
3567 |
+
0.0,
|
3568 |
+
0.0,
|
3569 |
+
0.0,
|
3570 |
+
0.0
|
3571 |
+
]
|
3572 |
+
},
|
3573 |
+
"num_transitions": 27044326,
|
3574 |
+
"num_trajectories": 92233
|
3575 |
+
},
|
3576 |
+
"rh20t_rlds/1.0.0": {
|
3577 |
+
"action": {
|
3578 |
+
"mean": [
|
3579 |
+
-5.332157638779582e+28,
|
3580 |
+
-1.5128827327837974e+29,
|
3581 |
+
-1.832736619079747e+28,
|
3582 |
+
0.5735913515090942,
|
3583 |
+
-0.00847744569182396,
|
3584 |
+
-0.5566052198410034,
|
3585 |
+
0.3186892569065094
|
3586 |
+
],
|
3587 |
+
"std": [
|
3588 |
+
Infinity,
|
3589 |
+
Infinity,
|
3590 |
+
Infinity,
|
3591 |
+
2.2581026554107666,
|
3592 |
+
0.1548534482717514,
|
3593 |
+
2.2581026554107666,
|
3594 |
+
0.39917993545532227
|
3595 |
+
],
|
3596 |
+
"max": [
|
3597 |
+
7.582831568163597e+35,
|
3598 |
+
7.557172735451728e+35,
|
3599 |
+
2.2717764477020827e+27,
|
3600 |
+
3.1415927410125732,
|
3601 |
+
1.5116956233978271,
|
3602 |
+
3.1415927410125732,
|
3603 |
+
1.0
|
3604 |
+
],
|
3605 |
+
"min": [
|
3606 |
+
-3.5543094244408723e+36,
|
3607 |
+
-8.723098019507117e+36,
|
3608 |
+
-9.648338287048974e+35,
|
3609 |
+
-3.1415927410125732,
|
3610 |
+
-1.5062522888183594,
|
3611 |
+
-3.1415927410125732,
|
3612 |
+
0.0
|
3613 |
+
],
|
3614 |
+
"q01": [
|
3615 |
+
0.36028257966041566,
|
3616 |
+
-0.272584410905838,
|
3617 |
+
0.005985925104469062,
|
3618 |
+
-3.1411514282226562,
|
3619 |
+
-0.5925320792198181,
|
3620 |
+
-3.1415159702301025,
|
3621 |
+
0.0
|
3622 |
+
],
|
3623 |
+
"q99": [
|
3624 |
+
0.7534684538841248,
|
3625 |
+
0.31738221645355225,
|
3626 |
+
0.33061375379562374,
|
3627 |
+
3.141425132751465,
|
3628 |
+
0.47507260441780086,
|
3629 |
+
3.141479730606079,
|
3630 |
+
1.0
|
3631 |
+
],
|
3632 |
+
"mask": [
|
3633 |
+
true,
|
3634 |
+
true,
|
3635 |
+
true,
|
3636 |
+
true,
|
3637 |
+
true,
|
3638 |
+
true,
|
3639 |
+
false
|
3640 |
+
]
|
3641 |
+
},
|
3642 |
+
"proprio": {
|
3643 |
+
"mean": [
|
3644 |
+
0.0,
|
3645 |
+
0.0,
|
3646 |
+
0.0,
|
3647 |
+
0.0,
|
3648 |
+
0.0,
|
3649 |
+
0.0,
|
3650 |
+
0.0
|
3651 |
+
],
|
3652 |
+
"std": [
|
3653 |
+
0.0,
|
3654 |
+
0.0,
|
3655 |
+
0.0,
|
3656 |
+
0.0,
|
3657 |
+
0.0,
|
3658 |
+
0.0,
|
3659 |
+
0.0
|
3660 |
+
],
|
3661 |
+
"max": [
|
3662 |
+
0.0,
|
3663 |
+
0.0,
|
3664 |
+
0.0,
|
3665 |
+
0.0,
|
3666 |
+
0.0,
|
3667 |
+
0.0,
|
3668 |
+
0.0
|
3669 |
+
],
|
3670 |
+
"min": [
|
3671 |
+
0.0,
|
3672 |
+
0.0,
|
3673 |
+
0.0,
|
3674 |
+
0.0,
|
3675 |
+
0.0,
|
3676 |
+
0.0,
|
3677 |
+
0.0
|
3678 |
+
],
|
3679 |
+
"q01": [
|
3680 |
+
0.0,
|
3681 |
+
0.0,
|
3682 |
+
0.0,
|
3683 |
+
0.0,
|
3684 |
+
0.0,
|
3685 |
+
0.0,
|
3686 |
+
0.0
|
3687 |
+
],
|
3688 |
+
"q99": [
|
3689 |
+
0.0,
|
3690 |
+
0.0,
|
3691 |
+
0.0,
|
3692 |
+
0.0,
|
3693 |
+
0.0,
|
3694 |
+
0.0,
|
3695 |
+
0.0
|
3696 |
+
]
|
3697 |
+
},
|
3698 |
+
"num_transitions": 52644433,
|
3699 |
+
"num_trajectories": 104392
|
3700 |
+
}
|
3701 |
+
}
|
3702 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<image>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<bos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<eos>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": {
|
26 |
+
"content": "<pad>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"unk_token": {
|
33 |
+
"content": "<unk>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
}
|
39 |
+
}
|
test_huggingface.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from pathlib import Path
|
4 |
+
import shutil
|
5 |
+
import os
|
6 |
+
import argparse
|
7 |
+
from pathlib import Path
|
8 |
+
import shutil
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from transformers import AutoModel, AutoProcessor
|
12 |
+
|
13 |
+
parser = argparse.ArgumentParser("Huggingface AutoModel Tesing")
|
14 |
+
parser.add_argument("--model_name_or_path", default="", help="pretrained model name or path.")
|
15 |
+
parser.add_argument("--num_images", type=int, default=1, help="num_images for testing.")
|
16 |
+
|
17 |
+
args = parser.parse_args()
|
18 |
+
if __name__ == "__main__":
|
19 |
+
model_name_or_path = Path(args.model_name_or_path)
|
20 |
+
processor = AutoProcessor.from_pretrained(args.model_name_or_path, trust_remote_code=True)
|
21 |
+
print(processor.statistics)
|
22 |
+
|
23 |
+
model = AutoModel.from_pretrained(args.model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16).eval().cuda()
|
24 |
+
|
25 |
+
image = Image.open("example.png").convert("RGB")
|
26 |
+
images = [image] * args.num_images
|
27 |
+
prompt = "What action should the robot take to pick the cpu?"
|
28 |
+
inputs = processor(images=images, text=prompt, unnorm_key="bridge_orig/1.0.0", return_tensors="pt")
|
29 |
+
print(inputs)
|
30 |
+
|
31 |
+
generation_outputs = model.predict_action(inputs)
|
32 |
+
print(generation_outputs, processor.batch_decode(generation_outputs))
|
33 |
+
|
34 |
+
actions = processor.decode_actions(generation_outputs, unnorm_key="bridge_orig/1.0.0")
|
35 |
+
print(actions)
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2523a63c898ebf0a32c7282a2e459ef2c950a846c5f3172305089e4149b6b6c3
|
3 |
+
size 36157680
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|