File size: 5,506 Bytes
8afb234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
seed: 12345
work_dir: ${hydra:runtime.cwd}
debug: false
print_config: true
ignore_warnings: true
datamodule:
transforms:
preparations:
eval:
TargetTransform:
_target_: myria3d.pctl.transforms.transforms.TargetTransform
_args_:
- ${dataset_description.classification_preprocessing_dict}
- ${dataset_description.classification_dict}
DropPointsByClass:
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass
CopyFullPos:
_target_: myria3d.pctl.transforms.transforms.CopyFullPos
CopyFullPreparedTargets:
_target_: myria3d.pctl.transforms.transforms.CopyFullPreparedTargets
GridSampling:
_target_: torch_geometric.transforms.GridSampling
_args_:
- 0.25
MinimumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes
_args_:
- 300
MaximumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes
_args_:
- 40000
CopySampledPos:
_target_: myria3d.pctl.transforms.transforms.CopySampledPos
Center:
_target_: torch_geometric.transforms.Center
predict:
DropPointsByClass:
_target_: myria3d.pctl.transforms.transforms.DropPointsByClass
CopyFullPos:
_target_: myria3d.pctl.transforms.transforms.CopyFullPos
GridSampling:
_target_: torch_geometric.transforms.GridSampling
_args_:
- 0.25
MinimumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MinimumNumNodes
_args_:
- 300
MaximumNumNodes:
_target_: myria3d.pctl.transforms.transforms.MaximumNumNodes
_args_:
- 40000
CopySampledPos:
_target_: myria3d.pctl.transforms.transforms.CopySampledPos
Center:
_target_: torch_geometric.transforms.Center
normalizations:
NullifyLowestZ:
_target_: myria3d.pctl.transforms.transforms.NullifyLowestZ
NormalizePos:
_target_: myria3d.pctl.transforms.transforms.NormalizePos
subtile_width: ${datamodule.subtile_width}
StandardizeRGBAndIntensity:
_target_: myria3d.pctl.transforms.transforms.StandardizeRGBAndIntensity
preparations_eval_list: '${oc.dict.values: datamodule.transforms.preparations.eval}'
preparations_predict_list: '${oc.dict.values: datamodule.transforms.preparations.predict}'
normalizations_list: '${oc.dict.values: datamodule.transforms.normalizations}'
_target_: myria3d.pctl.datamodule.hdf5.HDF5LidarDataModule
epsg: 2154
data_dir: null
split_csv_path: null
hdf5_file_path: null
points_pre_transform:
_target_: functools.partial
_args_:
- ${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform}
pre_filter:
_target_: functools.partial
_args_:
- ${get_method:myria3d.pctl.dataset.utils.pre_filter_below_n_points}
min_num_nodes: 1
tile_width: 1000
subtile_width: 50
subtile_overlap_predict: ${predict.subtile_overlap}
batch_size: 10
num_workers: 3
prefetch_factor: 3
dataset_description:
_convert_: all
classification_preprocessing_dict:
3: 5
4: 5
66: 65
classification_dict:
1: unclassified
2: ground
5: vegetation
6: building
9: water
17: bridge
64: lasting_above
d_in: 9
num_classes: 7
callbacks:
log_code:
_target_: myria3d.callbacks.comet_callbacks.LogCode
code_dir: ${work_dir}/myria3d
log_logs_dir:
_target_: myria3d.callbacks.comet_callbacks.LogLogsPath
lr_monitor:
_target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: step
log_momentum: true
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: val/loss_epoch
mode: min
save_top_k: 1
save_last: true
verbose: true
dirpath: checkpoints/
filename: epoch_{epoch:03d}
auto_insert_metric_name: false
early_stopping:
_target_: pytorch_lightning.callbacks.EarlyStopping
monitor: val/loss_epoch
mode: min
patience: 6
min_delta: 0
model:
_target_: myria3d.models.model.Model
d_in: ${dataset_description.d_in}
num_classes: ${dataset_description.num_classes}
classification_dict: ${dataset_description.classification_dict}
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt
neural_net_class_name: PyGRandLANet
neural_net_hparams:
num_features: ${model.d_in}
num_classes: ${model.num_classes}
num_neighbors: 16
decimation: 4
return_logits: true
interpolation_k: ${predict.interpolator.interpolation_k}
num_workers: 4
logger:
comet:
_target_: pytorch_lightning.loggers.comet.CometLogger
api_key: ${oc.env:COMET_API_TOKEN}
workspace: ${oc.env:COMET_WORKSPACE}
project_name: ${oc.env:COMET_PROJECT_NAME}
experiment_name: DATAPAPER-LidarHD-20240416_100k_fractal-6GPUs
auto_log_co2: false
disabled: false
task:
task_name: predict
predict:
src_las: /path/to/input.las
output_dir: /path/to/output_dir/
ckpt_path: FRACTAL-LidarHD_7cl_randlanet.ckpt
gpus: 0
subtile_overlap: 0
interpolator:
_target_: myria3d.models.interpolation.Interpolator
interpolation_k: 10
classification_dict: ${dataset_description.classification_dict}
probas_to_save: [building,ground]
predicted_classification_channel: PredictedClassification
entropy_channel: entropy
|