File size: 6,512 Bytes
88cbcd0
 
d6cf770
 
 
 
 
d87c801
d6cf770
 
 
 
 
 
d87c801
d6cf770
 
 
 
20b334f
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
d6cf770
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
 
09aaa6d
9c1de65
7bf16ce
a4fd9ca
 
79a7ccd
 
 
 
 
0c51ade
79a7ccd
 
 
 
 
 
 
0c51ade
a4fd9ca
 
 
6dc104b
a4fd9ca
 
 
6dc104b
 
 
 
 
 
 
 
a4fd9ca
6dc104b
a4fd9ca
 
 
f214513
 
a4fd9ca
 
 
 
 
f214513
 
 
 
 
 
 
 
 
 
 
a4fd9ca
 
79a7ccd
 
a4fd9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc104b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
license: etalab-2.0
tags:
- segmentation
- pytorch
- aerial imagery
- landcover
- IGN
model-index:
- name: FLAIR-INC_RVBIE_unetresnet34_15cl_norm
  results:
  - task:
      type: semantic-segmentation
    dataset:
      name: IGNF/FLAIR#1-TEST
      type: earth-observation-dataset
    metrics:
    - name: mIoU
      type: mIoU
      value: 54.7168
    - name: Overall Accuracy
      type: OA
      value: 76.3711
    - name: Fscore
      type: Fscore
      value: 67.6063
    - name: Precision
      type: Precision
      value: 69.3481
    - name: Recall
      type: Recall
      value: 67.6565
      
    - name: IoU Buildings
      type: IoU
      value: 82.6313
    - name: IoU Pervious surface
      type: IoU
      value: 53.2351
    - name: IoU Impervious surface
      type: IoU
      value: 74.1742
    - name: IoU Bare soil
      type: IoU
      value: 60.3958
    - name: IoU Water
      type: IoU
      value: 87.5887
    - name: IoU Coniferous
      type: IoU
      value: 46.3504
    - name: IoU Deciduous
      type: IoU
      value: 67.4473
    - name: IoU Brushwood
      type: IoU
      value: 30.2346
    - name: IoU Vineyard
      type: IoU
      value: 82.9251
    - name: IoU Herbaceous vegetation
      type: IoU
      value: 55.0283      
    - name: IoU Agricultural land
      type: IoU
      value: 52.0145
    - name: IoU Plowed land
      type: IoU
      value: 40.8387   
    - name: IoU Swimming pool
      type: IoU
      value: 48.4433    
    - name: IoU Greenhouse
      type: IoU
      value: 39.4447
      
pipeline_tag: image-segmentation
---

# FLAIR model collection
The FLAIR models is a collection of semantic segmentation models initially developed to classify land cover on very high resolution aerial ortho-images ([BD ORTHO®](https://geoservices.ign.fr/bdortho)). 
The distributed pre-trained model differ in their :
- input modalities : RVB (true colours), RVBI (true colours + infrared), RVBIE (true colours + infrared + elevation)
- model architecture : U-Net with a Resnet-34 encoder, Deeplab
- target class nomenclature : 12 or 15 land cover classes
- dataset for training : [FLAIR dataset](https://huggingface.co/datasets/IGNF/FLAIR) or the increased version of this dataset FLAIR-INC.


# FLAIR FLAIR-INC_RVBIE_resnet34_unet_15cl_norm model
The general characteristics of this specific model *FLAIR-INC_RVBIE_resnet34_unet_15cl_norm* are :
* RVBIE images (true colours + infrared + elevation)
* U-Net with a Resnet-34 encoder
* 15 class nomenclature [building,pervious_surface,impervious_surface,bare_soil,water,coniferous,deciduous,brushwood,vineyard,herbaceous,agricultural_land,plowed_land,swimming pool,snow,greenhouse]



## Model Informations

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/IGNF/FLAIR-1-AI-Challenge
- **Paper [optional]:** https://arxiv.org/pdf/2211.12979.pdf
- **Developed by:** IGN
- **Compute infrastructure:** 
    - software: python, pytorch-lightning
    - hardware: GENCI, XXX
- **License:** : Apache 2.0


  
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

The model has been trained with


## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

###Spatial resolution of input images :
The FLAIR-INC_RVBIE_resnet34_unet_15cl_norm model has been trained with fixed scale conditions. All patches used for training are serived from aerial images of 0.2 meters spatial resolution. 
No data augmentation method concerning scale change was used during training. The user should pay attention that generalization issues can occur while applying this model to images that have different spatial resolutions.








{{ bias_risks_limitations | default("[More Information Needed]", true)}}



### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}}

## How to Get Started with the Model

Use the code below to get started with the model.

{{ get_started_code | default("[More Information Needed]", true)}}

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

{{ training_data | default("[More Information Needed]", true)}}

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

{{ preprocessing | default("[More Information Needed]", true)}}


#### Training Hyperparameters

- **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

{{ speeds_sizes_times | default("[More Information Needed]", true)}}

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

{{ testing_data | default("[More Information Needed]", true)}}

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

{{ testing_metrics | default("[More Information Needed]", true)}}

### Results

{{ results | default("[More Information Needed]", true)}}

#### Summary

{{ results_summary | default("", true) }}


## Technical Specifications [optional]

### Model Architecture and Objective

{{ model_specs | default("[More Information Needed]", true)}}


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

{{ citation_bibtex | default("[More Information Needed]", true)}}

**APA:**

{{ citation_apa | default("[More Information Needed]", true)}}

## Contact
ai-challenge@ign.fr