wuxiaojun commited on
Commit
752d139
1 Parent(s): cc6f66c

init commit

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -18,9 +18,9 @@ widget:
18
 
19
  ## 简介 Brief Introduction
20
 
21
- 在Randeng-T5-Char-57M的基础上,收集了100个左右的中文数据集,进行Text2Text统一范式的有监督任务预训练。
22
 
23
- On the basis of Randeng-T5-Char-57M, about 100 Chinese datasets were collected and pre-trained for the supervised task of Text2Text unified paradigm.
24
 
25
  ## 模型分类 Model Taxonomy
26
 
@@ -33,9 +33,9 @@ On the basis of Randeng-T5-Char-57M, about 100 Chinese datasets were collected a
33
 
34
  参考论文:[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](http://jmlr.org/papers/v21/20-074.html)
35
 
36
- 基于[Randeng-T5-Char-57M](https://huggingface.co/IDEA-CCNL/Randeng-T5-Char-57M),我们在收集的100+个中文领域的多任务数据集(从中采样了30w+个样本)上微调了它,得到了此多任务版本。这些多任务包括:情感分析,新闻分类,文本分类,意图识别,自然语言推理,多项选择,指代消解,抽取式阅读理解,实体识别,关键词抽取,生成式摘要。
37
 
38
- Based on [Randeng-T5-Char-57M](https://huggingface.co/IDEA-CCNL/Randeng-T5-Char-57M), we fine-tuned it on a collection of 100+ multitasking datasets in Chinese domains (from which 30w+ samples were sampled) to obtain this multitasking version. These multitasks include: sentiment analysis, news classification, text classification, intention recognition, natural language inference, multiple choice, denotational disambiguation, extractive reading comprehension, entity recognition, keyword extraction, and generative summarization.
39
 
40
 
41
  ## 使用 Usage
@@ -54,7 +54,7 @@ model.resize_token_embeddings(len(tokenizer))
54
  model.eval()
55
 
56
  # tokenize
57
- text = "情感分析任务:【房间还是比较舒适的,酒店服务良好】这篇文章的情感态度是什么?正面/负面评"
58
  encode_dict = tokenizer(text, max_length=512, padding='max_length',truncation=True)
59
 
60
  inputs = {
 
18
 
19
  ## 简介 Brief Introduction
20
 
21
+ 在Randeng-T5-Char-57M-Chinese的基础上,收集了100个左右的中文数据集,进行Text2Text统一范式的有监督任务预训练。
22
 
23
+ On the basis of Randeng-T5-Char-57M-Chinese, about 100 Chinese datasets were collected and pre-trained for the supervised task of Text2Text unified paradigm.
24
 
25
  ## 模型分类 Model Taxonomy
26
 
 
33
 
34
  参考论文:[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](http://jmlr.org/papers/v21/20-074.html)
35
 
36
+ 基于[Randeng-T5-Char-57M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-T5-Char-57M-Chinese),我们在收集的100+个中文领域的多任务数据集(从中采样了30w+个样本)上微调了它,得到了此多任务版本。这些多任务包括:情感分析,新闻分类,文本分类,意图识别,自然语言推理,多项选择,指代消解,抽取式阅读理解,实体识别,关键词抽取,生成式摘要。
37
 
38
+ Based on [Randeng-T5-Char-57M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-T5-Char-57M-Chinese), we fine-tuned it on a collection of 100+ multitasking datasets in Chinese domains (from which 30w+ samples were sampled) to obtain this multitasking version. These multitasks include: sentiment analysis, news classification, text classification, intention recognition, natural language inference, multiple choice, denotational disambiguation, extractive reading comprehension, entity recognition, keyword extraction, and generative summarization.
39
 
40
 
41
  ## 使用 Usage
 
54
  model.eval()
55
 
56
  # tokenize
57
+ text = "情感分析任务:【房间还是比较舒适的,酒店服务良好】这篇文章的情感态度是什么?正面/负面"
58
  encode_dict = tokenizer(text, max_length=512, padding='max_length',truncation=True)
59
 
60
  inputs = {